Compositionality

The open-access journal for the mathematics of composition

Substructural fixed-point theorems and the diagonal argument: theme and variations

David Michael Roberts

School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia

ABSTRACT

This article re-examines Lawvere's abstract, category-theoretic proof of the fixed-point theorem whose contrapositive is a `universal' diagonal argument. The main result is that the necessary axioms for both the fixed-point theorem and the diagonal argument can be stripped back further, to a semantic analogue of a weak substructural logic lacking weakening or exchange.

► BibTeX data

► References

[1] Samson Abramsky. “No-cloning in categorical quantum mechanics”. In: Semantic techniques in quantum computation. https:/​/​doi.org/​10.1017/​CBO9781139193313.002, arXiv:0910.2401. Cambridge Univ. Press, Cambridge, 2010, pp. 1–28.
https:/​/​doi.org/​10.1017/​CBO9781139193313.002
arXiv:0910.2401

[2] Samson Abramsky and Jonathan Zvesper. “From Lawvere to Brandenburger-Keisler: Interactive Forms of Diagonalization and Self-reference”. In: Coalgebraic Methods in Computer Science. Ed. by Dirk Pattinson and Lutz Schröder. https:/​/​doi.org/​10.1016/​j.jcss.2014.12.001, arXiv:1006.0992. 2012, pp. 1–19.
https:/​/​doi.org/​10.1016/​j.jcss.2014.12.001
arXiv:1006.0992

[3] John Baez and Mike Stay. “Physics, topology, logic and computation: a Rosetta Stone”. In: New structures for physics. Vol. 813. Lecture Notes in Phys. https:/​/​doi.org/​10.1007/​978-3-642-12821-9, arXiv:0903.0340. Springer, Heidelberg, 2011, pp. 95–172.
https:/​/​doi.org/​10.1007/​978-3-642-12821-9
arXiv:0903.0340

[4] Carsten Butz. “Regular Categories and Regular Logic”. In: BRICS LS-98-2 (1998). https:/​/​www.brics.dk/​LS/​98/​2/​.
https:/​/​www.brics.dk/​LS/​98/​2/​

[5] Georg Cantor. “Ueber eine elementare Frage der Mannigfaltigkeitslehre”. In: Jahresber. Dtsch. Math.-Ver. 1 (1892), pp. 75–78.

[6] Karel Chvalovský and Rostislav Horčík. “Full Lambek calculus with contraction is undecidable”. In: J. Symb. Log. 81.2 (2016). https:/​/​doi.org/​10.1017/​jsl.2015.18, pp. 524–540.
https:/​/​doi.org/​10.1017/​jsl.2015.18

[7] Alexei Davydov. “Nuclei of categories with tensor products”. In: Theory and Applications of Categories 18 (2007). http:/​/​www.tac.mta.ca/​tac/​volumes/​18/​16/​18-16abs.html, arXiv:0708.2761, pp. 440–472.
arXiv:0708.2761
http:/​/​www.tac.mta.ca/​tac/​volumes/​18/​16/​18-16abs.html

[8] Valeria de Paiva. Dialectica Categories: the Relevant version. Talk at ICM2018 logic-satellite meeting, Niteroi, Brazil, August 2018, https:/​/​www.slideshare.net/​valeria.depaiva/​dialectica-categories-the-relevant-version-valeria-de-paiva, 2018.
https:/​/​www.slideshare.net/​valeria.depaiva/​dialectica-categories-the-relevant-version-valeria-de-paiva

[9] Valeria de Paiva. Relevant Dialectica Categories. MIT Category Theory Seminar talk, https:/​/​youtu.be/​HnxUYb4FGzY. Aug. 2020.
https:/​/​youtu.be/​HnxUYb4FGzY

[10] Kosta Došen and Zoran Petrić. “Relevant categories and partial functions”. In: Publications de l’Institut Mathématique 82 (2007). https:/​/​doi.org/​10.2298/​PIM0796017D, arXiv:math/​0504133, pp. 17–23.
https:/​/​doi.org/​10.2298/​PIM0796017D
arXiv:math/0504133

[11] Martín Hötzel Escardó. On Lawvere’s Fixed Point Theorem (LFPT). Commented agda code available at https:/​/​www.cs.bham.ac.uk/​ mhe/​agda-new/​LawvereFPT.html. 2018.
https:/​/​www.cs.bham.ac.uk/​%20mhe/​agda-new/​LawvereFPT.html

[12] Robert Feys. “Les Logiques nouvelles des modalités”. In: Revue néoscolastique de philosophie 40 (1937). Available from https:/​/​www.jstor.org/​stable/​26346052, pp. 517–553.
https:/​/​www.jstor.org/​stable/​26346052

[13] Misha Gromov. Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2. https:/​/​www.ihes.fr/​ gromov/​wp-content/​uploads/​2018/​08/​ergologic31.pdf. 2013.
https:/​/​www.ihes.fr/​%20gromov/​wp-content/​uploads/​2018/​08/​ergologic31.pdf

[14] Bart Jacobs. “Semantics of lambda-${\rm I}$ and of other substructure lambda calculi”. In: Typed lambda calculi and applications (Utrecht, 1993). Vol. 664. Lecture Notes in Comput. Sci. https:/​/​doi.org/​10.1007/​BFb0037107. Springer, Berlin, 1993, pp. 195–208.
https:/​/​doi.org/​10.1007/​BFb0037107

[15] F. William Lawvere. “Diagonal arguments and Cartesian closed categories”. In: Repr. Theory Appl. Categ. 15 (2006). Reprinted from Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two) pp. 134–145, https:/​/​doi.org/​10.1007/​BFb0080769.
https:/​/​doi.org/​10.1007/​BFb0080769

[16] F. William Lawvere and Stephen H. Schanuel. Conceptual mathematics. 2nd Edition. https:/​/​doi.org/​10.1017/​CBO9780511804199. Cambridge University Press, Cambridge, 2009.
https:/​/​doi.org/​10.1017/​CBO9780511804199

[17] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. “Internal universes in models of homotopy type theory”. In: rd International Conference on Formal Structures for Computation and Deduction. Vol. 108. LIPIcs. Leibniz Int. Proc. Inform. https:/​/​doi.org/​10.4230/​LIPIcs.FSCD.2018.22, arXiv:1801.07664. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, Art. No. 22, 17.
https:/​/​doi.org/​10.4230/​LIPIcs.FSCD.2018.22
arXiv:1801.07664

[18] William McCune and Larry Wos. “A case study in automated theorem proving: finding sages in combinatory logic”. In: J. Automat. Reasoning 3.1 (1987). https:/​/​doi.org/​10.1007/​BF00381147, pp. 91–107.
https:/​/​doi.org/​10.1007/​BF00381147

[19] María Claudia Meré. “Lógicas Relevantes: formalismo e semântica”. Available from https:/​/​www.dbd.puc-rio.br/​deptoinformatica/​93mere.pdf. PhD thesis. Pontifícia Universidade Católica do Rio de Janeiro, 1993.
https:/​/​www.dbd.puc-rio.br/​deptoinformatica/​93mere.pdf

[20] Robert K. Meyer. “Conservative extension in relevant implication”. In: Studia Logica 31 (1972). https:/​/​doi.org/​10.1007/​BF02120525, pp. 40–46.
https:/​/​doi.org/​10.1007/​BF02120525

[21] Robert K. Meyer and Richard Routley. “Algebraic analysis of entailment. I”. In: Logique et Anal. (N.S.) 15 (1972). https:/​/​www.jstor.org/​stable/​44083856, pp. 407–428. issn: 0024-5836.
https:/​/​www.jstor.org/​stable/​44083856

[22] Bartosz Milewski. How to get enriched over magmas and monoids. Blog post, https:/​/​bartoszmilewski.com/​2014/​09/​29/​how-to-get-enriched-over-magmas-and-monoids/​. 2014.
https:/​/​bartoszmilewski.com/​2014/​09/​29/​how-to-get-enriched-over-magmas-and-monoids/​

[23] Philip S. Mulry. “A categorical approach to the theory of computation”. In: Ann. Pure Appl. Logic 43.3 (1989). https:/​/​doi.org/​10.1016/​0168-0072(89)90072-9, pp. 293–305.
https:/​/​doi.org/​10.1016/​0168-0072(89)90072-9

[24] Peter W. O’Hearn, A. John Power, Makoto Takeyama, and Robert D. Tennent. “Syntactic control of interference revisited”. In: Mathematical foundations of programming semantics (New Orleans, LA, 1995). Vol. 1. Electron. Notes Theor. Comput. Sci. https:/​/​doi.org/​10.1016/​S1571-0661(04)00026-X. Elsevier Sci. B. V., Amsterdam, 1995, pp. 447–486.
https:/​/​doi.org/​10.1016/​S1571-0661(04)00026-X

[25] Hiroakira Ono. “Structural rules and a logical hierarchy”. In: Mathematical logic. https:/​/​doi.org/​10.1007/​978-1-4613-0609-2. Plenum, New York, 1990, pp. 95–104.
https:/​/​doi.org/​10.1007/​978-1-4613-0609-2

[26] Greg Restall. “Modalities in substructural logics”. In: Logique et Anal. (N.S.) 36.141-142 (1993). https:/​/​www.jstor.org/​stable/​44084365, pp. 25–38. issn: 0024-5836.
https:/​/​www.jstor.org/​stable/​44084365

[27] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[28] Dana S. Scott. “Relating theories of the $\lambda $-calculus”. In: To H. B. Curry: essays on combinatory logic, lambda calculus and formalism. Academic Press, London-New York, 1980, pp. 403–450.

[29] Peter Selinger. “Categorical structure of asynchrony”. In: MFPS XV: Mathematical Foundations of Programming Semantics, Fifteenth Conference (New Orleans, LA, 1999). Vol. 20. Electron. Notes Theor. Comput. Sci. https:/​/​doi.org/​10.1016/​S1571-0661(04)80073-2. Elsevier Sci. B. V., Amsterdam, 1999, 24 pp.
https:/​/​doi.org/​10.1016/​S1571-0661(04)80073-2

[30] Michael Shulman. “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”. In: Math. Structures Comput. Sci. 28.6 (2018). https:/​/​doi.org/​10.1017/​S0960129517000147, arXiv:1509.07584, pp. 856–941.
https:/​/​doi.org/​10.1017/​S0960129517000147
arXiv:1509.07584

[31] Raymond M. Smullyan. To Mock a Mocking Bird and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic. Knopf, 1985.

[32] M. E. Szabo. Algebra of proofs. Vol. 88. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1978, pp. xii+297.

[33] Kornél Szlachányi. “Skew-monoidal categories and bialgebroids”. In: Advances in Mathematics 231.3 (2012). https:/​/​doi.org/​10.1016/​j.aim.2012.06.027, arXiv:1201.4981, pp. 1694–1730.
https:/​/​doi.org/​10.1016/​j.aim.2012.06.027
arXiv:1201.4981

[34] The Agda Team. Agda documentation: Flat Modality. https:/​/​agda.readthedocs.io/​en/​latest/​language/​flat.html. 2021.
https:/​/​agda.readthedocs.io/​en/​latest/​language/​flat.html

[35] Vladimir L. Vasyukov. “Paraconsistency in categories: case of relevance logic”. In: Studia Logica 98.3 (2011). https:/​/​doi.org/​10.1007/​s11225-011-9342-2, pp. 429–443.
https:/​/​doi.org/​10.1007/​s11225-011-9342-2

[36] David Walker. “Substructural Type Systems”. In: Advanced Topics in Types and Programming Languages. The MIT Press, 2005, pp. 3–43.

[37] Gijs Jasper Wijnholds. “Coherent diagrammatic reasoning in compositional distributional semantics”. In: Logic, language, information, and computation. Vol. 10388. Lecture Notes in Comput. Sci. https:/​/​doi.org/​10.1007/​978-3-662-55386-2. Springer, Berlin, 2017, pp. 371–386.
https:/​/​doi.org/​10.1007/​978-3-662-55386-2

[38] Georg H. von Wright. An essay in modal logic. Vol. 5. Studies in Logic and the Foundations of Mathematics. North-Holland, 1951.

[39] Noson S. Yanofsky. “A universal approach to self-referential paradoxes, incompleteness and fixed points”. In: Bull. Symbolic Logic 9.3 (2003). https:/​/​doi.org/​10.2178/​bsl/​1058448677, arXiv:math/​0305282, pp. 362–386.
https:/​/​doi.org/​10.2178/​bsl/​1058448677
arXiv:math/0305282

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-27 10:11:31). On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-27 10:11:32).