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There are various gate sets used for describing quantum computation. A particularly
popular one consists of Clifford gates and arbitrary single-qubit phase gates. Com-
putations in this gate set can be elegantly described by the ZX-calculus, a graphical
language for a class of string diagrams describing linear maps between qubits. The
ZX-calculus has proven useful in a variety of areas of quantum information, but is less
suitable for reasoning about operations outside its natural gate set such as multi-linear
Boolean operations like the Toffoli gate. In this paper we study the ZH-calculus, an
alternative graphical language of string diagrams that does allow straightforward en-
coding of Toffoli gates and other more complicated Boolean logic circuits. We find a set
of simple rewrite rules for this calculus and show it is complete with respect to matrices
over Z[ 1

2 ], which correspond to the approximately universal Toffoli+Hadamard gateset.
Furthermore, we construct an extended version of the ZH-calculus that is complete
with respect to matrices over any ring R where 1 + 1 is not a zero-divisor.
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1 Introduction
Graphical calculi give us a compact way to express and reason about complex, interacting processes
using string diagrams. String diagrams represent processes that can compose in sequence or parallel
using a notation consisting of boxes or nodes connected by wires. Notably, wires can be left ‘open’
at one or both ends to indicate inputs and outputs of the composed process. For example, depicting
sequential composition as ◦ and parallel composition as ⊗, we can translate expressions such as
the following one into a string diagram:

h ◦ (f ⊗ g) ⇝

h

f g

A

B

C

D

X Y Z

Such notation has proven convenient for expressing compositions and tensor products of linear
maps (as used extensively in quantum theory), and more generally for expressing morphisms in a
generic symmetric monoidal category.

A graphical calculus is both a collection of graphical building-blocks and a collection of equa-
tions between string diagrams that we can use to transform one diagram into another, typically
equivalent, one. One of the best-studied graphical calculi is the ZX-calculus [11, 12, 14, 44], which
has been applied extensively in the study of quantum circuits and related structures in quantum
computation (e.g. measurement-based quantum computing [6, 19, 31], fault-tolerant quantum com-
putations [18, 24, 28], error-correcting codes [10], circuit optimisation [20, 22, 32], and classical
simulation [33, 35]). ZX-diagrams consist of spiders, a type of well-behaved linear map that is
depicted by coloured dots:

Quantum circuits lie at the heart of the circuit model of quantum computation, which represents
the quantum part of the computation as a large unitary operator arising from compositions and
tensor products of basic gates [41]. There are many choices of basic gates which are universal, in
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the sense that they can construct or approximate arbitrary 2n × 2n unitary matrices. A popular
choice is the Clifford+phase set of gates:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 H := 1√
2

(
1 1
1 −1

)
Zα :=

(
1 0
0 eiα

)

This set of gates is universal, here in the sense that it can exactly express any unitary matrix. A
common finite restriction of this infinite set is the Clifford+T gate set, which replaces Zα with T :=
Zπ/4. This set of gates is able to approximate any unitary up to arbitrary finite precision. A further
restriction to the Clifford gate set (CNOT, H, S := T 2) is no longer universal, and in fact yields
only circuits that can be efficiently simulated on a classical computer [1]. Nevertheless, Clifford
circuits play an important role in quantum computation [41], quantum error correction [7, 23, 25],
and many quantum communication protocols.

Notably, these three important families of circuits map straightforwardly to three fragments
of the ZX-calculus: where parameters are restricted to integer multiples of π

2 (Clifford), restricted
to integer multiples of π

4 (Clifford+T), or are unrestricted (Clifford+phase). Furthermore, each of
these fragments of the ZX-calculus has been proven complete in the sense that two ZX-diagrams
which evaluate to the same linear operator are provably equal using just diagram rewrite rules [4,
29, 40].

However, the ZX-calculus remains closely tied to the structure of the Clifford+phase family
of circuits. The further one gets from this family, the more awkward it becomes to work with
computations using the ZX-calculus. For instance, the CNOT gate (‘controlled-NOT’) can be
expressed quite simply in the ZX-calculus:

u

v

}

~ = CNOT

In contrast, the ‘controlled-controlled-NOT’, commonly referred to as the Toffoli gate, is consider-
ably more complicated, with typical presentations requiring many more generators which cannot
be easily manipulated using the ZX-calculus rules [14, Ex. 12.10].

The problem with the Toffoli gate is that it acts on basis states in a manner that is not
Z2-affine. For example, the Boolean CNOT is the map CNOT : {0, 1}2 → {0, 1}2 given by
CNOT(x, y) = (x, x ⊕ y), where ⊕ denotes XOR. Such a Boolean function is called affine, in
analogy to the theory of polynomials, since it only contains terms of multiplicative degree at
most 1 that are then added together (XOR acts as addition on the field Z2). Similarly, we say
the NOT gate NOT (x) = x ⊕ 1 is affine, since again it is a sum of terms of degree at most
1. In the ZX-calculus there are two main types of generators: Z-spiders and X-spiders. Both of
these are closely related to affine Boolean functions: the Z-spider is based on the COPY Boolean
map COPY(x) = (x, x), while the X-spider is based on XOR. As being affine is baked into the
generators, some tricks are required to represent non-affine Boolean functions in the ZX-calculus,
such as the Toffoli gate TOF(x, y, z) = (x, y, (x · y)⊕ z) that contains the degree-2 term x · y.

The way we solve this issue in this paper is by introducing a third diagrammatic type of
generator beyond the Z and X spiders: the H-box. An n-input 0-output H-box is defined by
|x1 · · ·xn⟩ 7→ (−1)x1·...·xn . This can then be used in combination with Z-spiders (i.e. copy maps)
to represent the ‘controlled-controlled-Z’ gate, and thus the Toffoli gate.

Another way to view the H-box generator is as a generalisation of the Hadamard gate to a
linear map with an arbitrary number of inputs and outputs.

With this new generator comes a new set of graphical rewrite rules that allow us to reason
more efficiently about quantum computation involving non-affine Boolean functions. The resulting
graphical language is called the ZH-calculus, since its main generators are Z-spiders and H-boxes.
The main topic of this paper is to show that various fragments of the ZH-calculus are complete.
Specifically, we find a set of particularly simple and compelling rewrite rules (see Figure 1) that
are complete for the approximately universal Toffoli-Hadamard gate set.1 Arguably, this is the

1The Toffoli-Hadamard gate set is only approximately universal for ‘real’ quantum computing, where all unitaries

Accepted in Compositionality on 2022-11-07. Click on the title to verify. 3



Volume 5 Issue 5 ISSN 2631-4444

smallest complete rule set for an approximately universal fragment of quantum computing (we
discuss this claim in more detail in Section 2.3). Building on this work, we show that for any ring
where 2 := 1 + 1 is not a zero divisor, we can generalise the ZH-calculus in order to express all
matrices over this ring, and we exhibit a complete set of rules for this generalisation as well.

This article is based on a conference paper by Backens and Kissinger [5] which first introduced
the ZH-calculus and proved completeness for the ZH-calculus with complex parameters, an unpub-
lished preprint of van de Wetering and Wolffs [45] which proved completeness for the phase-free
fragment of the calculus, and the DPhil thesis of Miller-Bakewell [39] which showed how the ZH-
calculus and its completeness could be extended to arbitrary rings. The formal developments in
those papers have been expanded and unified, and the technical content has been extended signif-
icantly in three ways: we find a simpler complete rule set for the phase-free fragment, we give a
completely self-contained proof of phase-free completeness based on an encoding of arithmetic into
ZH, and we extend the ZH-calculus to any ring where 2 := 1 + 1 is not a zero divisor.

1.1 Related work
In the earliest complete version of the ZX-calculus, a new generator, the ‘triangle’, was introduced
in order to represent non-affine Boolean functions [40]. This has later also been used to prove com-
pleteness of the fragment corresponding to the Toffoli+Hadamard gate set that we also study [47],
as well as to find an axiomatisation of the ZX-calculus over arbitrary rings [52]. In [16], a complete
ruleset for classical circuits, i.e. natural number matrices, was found which uses almost the same
ruleset as we do in the phase-free fragment. The difference is that [16] treats the AND gate as
an atomic non-symmetric generator, while we decompose it into H-boxes.2 The seminal complete
graphical language for the related fragment of integer matrices is the ZW-calculus [26] which has
generators based on the two different types of entanglement that are possible in tripartite qubit
systems [13]. The related language ringR [39] was designed to unify the study of qubit graphical
calculi parameterised by phase rings, and indeed both parameterised ZH (Section 7) and the in-
terpretation of ZH as operations on Boolean functions (Section 2.3) fit into this scheme. Therefore
there are natural maps from ringB to ZH and from ringR to ZHR, the second of which is exhibited
in [39]. Note that [9] shows that, under certain assumptions, there are only three basic graphical
calculi for qubits: ZX, ZW, and ZH. The results presented in the current paper prove that the
youngest of these calculi, ZH, is complete, concluding the program of finding complete graphical
calculi for qubits.

Using the ZH-calculus, an efficient description of hypergraph states can be given [37], which
allows for a description of ZH-diagrams in terms of path-sums [2, 49, 51]. There is also a close
connection between ZH-diagrams and quantum multiple-valued decision diagrams [50]. The ZH-
calculus has been used to give a graphical description of AKLT states, a particularly canonical
type of condensed matter system [17], and of spin-networks [21].

1.2 Overview of the paper and structure of the main proof
In Section 2 we introduce the ZH-calculus. We present and motivate the rewrite rules and we
introduce the notation we will use throughout the paper (the rules can be found in Figure 1, their
Boolean counterparts that motivate them can be found in Figure 2). Note that in particular, in
subsection 2.5, we define ‘labelled H-boxes’, which are derived generators that form an essential
ingredient to our proof of completeness of the ZH-calculus.

The majority of the paper, Sections 3–6, is devoted to this proof of completeness.
First, in Section 3, we prove several special cases of three families of equations that lie at the

core of our completeness proof. These families are called ‘multiply’, ‘intro’, and ‘average’ (see,
respectively, (Ma,b), (Ia) and (Aa,b)) and apply to labelled H-boxes.

contain only real numbers. However, such real unitaries can simulate with constant overhead unitaries with complex
entries [43]. The notion of approximate universality is here hence different than that of Clifford+T , and might better
be called ‘computationally universal’. We will however not make this technical distinction in the remainder of the
paper.

2In fact, his rules were inspired by the rules of the phase-free ZH-calculus presented in an earlier preprint [45]
(personal communication, Comfort).
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Then, in Section 4, we introduce normal form diagrams. A normal form diagram corresponds
in a precise way to the matrix the diagram represents, and hence is unique for a given underlying
linear map. Given two diagrams representing the same linear map, the ability to reduce both of
them to normal form then shows that they can be transformed into the same diagram, and hence
that the calculus is complete. In this section, we give a proof that the reduction to normal form can
be done conditional on having proved all instances of multiply, intro and average. This conditional
proof works by showing that each generator can be transformed into normal form (Lemmas 4.5
and 4.20), that a tensor product of normal forms can be reduced to normal form (Corollary 4.12),
and that connecting any of the wires in a normal form results in a diagram that can again be
brought to normal form (Corollary 4.19). With these steps and the condition, any diagram can be
brought into normal form (Proposition 4.21). It remains to prove all instances of multiply, intro
and average.

In Section 5, we prove that we can do basic arithmetic on the labels of H-boxes: addition of
H-box labels in Proposition 5.10, and multiplication of H-box labels (which is exactly the general
multiply rule) in Proposition 5.16. Then, in Section 6, we give proofs of the general average rule
(Proposition 6.2) and general intro rule (Proposition 6.4). Together with the conditional reduction
to normal form, this finishes our proof of completeness (Theorem 6.5). The reason we structured
the proof like this, starting with a conditional proof of the reduction to normal form, is because
some of the proofs in Sections 5 and 6 use this reduction to normal form (with a careful analysis
that shows the required instances of average, intro and multiply were all proved in Section 3), since
we could not find a more direct way to prove them.

In Section 7, we shift to studying the ZH-calculus over arbitrary rings. We prove its complete-
ness by assuming the multiply, intro, and average rules as axioms. Then in Section 8, we study
a couple of modifications to the calculus and its rules. We end with some concluding remarks in
Section 9.

2 The ZH-calculus
The ZH-calculus is a graphical language for expressing maps with zero or more inputs and outputs
as certain string diagrams called ZH-diagrams. As a convention, we will draw inputs as wires
entering the bottom of the diagram and outputs as wires exiting the top.

Throughout this paper, we will distinguish formal ZH-diagrams D : m→ n with m input wires
and n output wires, from their standard interpretation as linear maps JDK : (C2)⊗m → (C2)⊗n,
where (C2)⊗m ∼= C2m is the m-fold tensor product of the 2D vector space C2.

Remark 2.1. In categorical terms, ZH-diagrams are morphisms in the free PROP ZH presented
by the ZH-calculus, considered as a symmetric monoidal category, and J−K is a strong monoidal
functor from ZH to (VectC,⊗), the category of finite-dimensional complex vector spaces, with
the monoidal product given by the tensor product. Though familiarity with symmetric monoidal
categories and PROPs is not required to read this paper, the interested reader can find an accessible
introduction in Chapter 2 of [53].

2.1 The generators
ZH-diagrams have three types of generators: Z-spiders represented by white dots, H-boxes repre-
sented by white boxes, and a star generator represented by . These generators are interpreted
as linear maps on copies of C2. We denote the standard (also called computational) basis of C2 in
Dirac notation as:

|0⟩ :=
(

1
0

)
|1⟩ :=

(
0
1

)
We will be using this Dirac ‘ket’ notation |ψ⟩ to denote a state in a vector space. We will also denote
the ‘bra’ ⟨ψ| for the linear map that calculates the inner product with |ψ⟩. That is, inputting a
state |ϕ⟩ gives ⟨ψ| (|ϕ⟩) = ⟨ψ|ϕ⟩.

The computational basis states |0⟩ and |1⟩ extend naturally to a basis for (C2)⊗n by interpreting
bitstrings as tensor products:

|x1 . . . xn⟩ := |x1⟩ ⊗ · · · ⊗ |xn⟩

Accepted in Compositionality on 2022-11-07. Click on the title to verify. 5



Volume 5 Issue 5 ISSN 2631-4444

We can define the interpretation of Z-spiders and H-boxes in terms of these basis states. Z-
spiders and H-boxes can have any number of inputs and outputs, and are then interpreted as the
following linear maps:
u

www
v

. . .

. . .

n

m

}

���
~

:= |0⟩⊗n ⟨0|⊗m+|1⟩⊗n ⟨1|⊗m

u

wwww
v

. . .

. . .

n

m

}

����
~

:=
∑

(−1)i1...imj1...jn |j1 . . . jn⟩ ⟨i1 . . . im|

where J·K denotes the map from diagrams to matrices. The sum in the second equation is over
all i1, . . . , im, j1, . . . , jn ∈ {0, 1} so that an H-box represents a matrix with all entries equal to 1,
except the bottom right element, which is −1.

Finally we have the generator star, which has zero inputs and outputs. Its interpretation is:

J K := 1
2

Straight and curved wires have the following interpretations:

J | K := |0⟩⟨0|+ |1⟩⟨1| J K := |00⟩+ |11⟩ J K := ⟨00|+ ⟨11| .

When two diagrams are juxtaposed, the corresponding linear map is the tensor product (a.k.a.
Kronecker product) of the matrices corresponding to the individual diagrams. A sequential com-
position of two diagrams is interpreted as the matrix product of the matrices corresponding to the
individual diagrams:

t . . .

D1
. . .

. . .

D2
. . .

|

:=
t . . .

D1
. . .

|

⊗

t . . .

D2
. . .

|
u

www
v

D2

. . .

. . .

D1
. . .

}

���
~

:=
t . . .

D2
. . .

|

◦

t . . .

D1
. . .

|

Some diagram motifs appear so often that we create shorthands for them, called derived gen-
erators. We define the derived grey spider and the grey spider with a NOT as:

(X) :=
. . .

. . .

. . .

. . .
(NOT ) ¬ :=

· · ·

· · ·

· · ·

· · ·
(1)

The generator acts as XOR on the computational basis while ¬ acts as NOT:
r z

= |0⟩⟨00|+ |0⟩⟨11|+ |1⟩⟨01|+ |1⟩⟨10|
r

¬
z

= |0⟩⟨1|+ |1⟩⟨0| .

In some of the later sections there will be diagrams with many NOTs. To avoid overcrowding,
we will draw a red dashed edge for an edge between Z-spiders with a NOT on it:

:= ¬

. . .

. . . . . .

. . .

(2)

We also introduce the derived negate spider (a white NOT):

(Z) ¬ :=
· · ·

· · ·

· · ·

· · ·
(3)

The negate white spider with one input and output acts like the Z gate:
r

¬
z

= |0⟩⟨0| − |1⟩⟨1|
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(zs)
. . .

. . .

m

n

. . .

n

m

. . .

= (id) =

(hs)
. . .

. . .

m

n

. . .

n

m

. . .

= (hh) =

(ba1)
. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . . (ba2)
. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . .

(m) = (o) =¬ ¬

Figure 1: The rules of the ZH-calculus. Throughout, m,n are nonnegative integers. The right-hand sides of
both bialgebra rules (ba1) and (ba2) are complete bipartite graphs on (m+n) vertices, with an additional input
or output for each vertex. The horizontal edges in equation (o) are well-defined because only the topology
matters and we thus do not need to distinguish between inputs and outputs of generators. (zs) and (hs) stand
respectively for Z-spider and H-spider ; (id) for identity ; (ba1) and (ba2) for bialgebra; (m) for multiply ; and
(o) for ortho.

2.2 The rules
The ZH-calculus comes with a set of rewrite rules shown in Figure 1. Of the 8 rules in Figure 1, 7 are
‘obvious’ in the sense that they express simple properties of the structure of the underlying Boolean
functions (see Section 2.3). The only outlier is (o) which seems more arbitrary. In Section 8.1 we
will see that we can replace (o) with two smaller rules.

Additionally, the calculus has the meta-rule that only topology matters. This means that two
diagrams are considered equal when one can be topologically deformed into the other, while re-
specting the order of the inputs and outputs. Finally, the two generators are considered to be
symmetric and undirected, so that the following equations also hold:

=
...

... ...

...

...

...

...

...
= =

...

...
=

...

...
==

...... ... ...

...

...

...

...

...
=

...... ...
=

These symmetry properties also hold for the derived grey spider and NOT gate.

Proposition 2.2. The ZH-calculus is sound.
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Proof. It is straightforward to check that the symmetry properties for each generator and the finite
rules of Figure 3 are sound by concrete calculation. (ba1) and (ba2) can both be reduced to a finite
set of equations for which soundness is easily checked and from which the general infinite family
of rules can be derived using induction (see for instance [14, Theorem 9.71]). The rules (zs) and
(hs) express equations related to Frobenius algebras for which soundness can also be checked in a
standard manner, see for instance [15]. Soundness of the meta rule ‘only topology matters’ follows
by considering the string diagrams as morphisms in a compact closed category [42]. ■

The converse to soundness is completeness. Determining that the ZH-calculus is complete
will be the main objective of this paper. A third important property of diagrammatic languages
is universality. It can be seen from the definitions of the generators that their interpretations
as linear maps are all matrices over Z[ 1

2 ], and therefore all ⊗- and ◦-products of the generators
also have interpretations as matrices over Z[ 1

2 ]. Universality means that we can represent any
matrix over Z[ 1

2 ] using the ZH-calculus. We cannot prove this property yet, but it will follow
immediately from Theorem 4.4. These matrices, and hence the ZH-calculus, are closely related to
the approximately universal gate set Toffoli+Hadamard [3]. We discuss the precise connection in
more detail in Section 8.4.

2.3 Motivation for the rewrite rules
Let us give some motivation for the rewrite rules of Figure 1. Each of the three main (derived)
generators of the ZH-calculus, the Z-spiders, X-spiders and H-boxes, corresponds to a family of
Boolean functions. Using this correspondence, each of the rules of Figure 1 can be seen to be
equivalent to an equation that holds between Boolean functions.

In order to make this correspondence, we first recall that we can lift a Boolean function f :
{0, 1}n → {0, 1}m to a linear map f̂ : C2n → C2m by its action on the computational basis states:

f̂ |x1 . . . xn⟩ = |f(x1 . . . xn)⟩ . (4)

Define the COPY family of Boolean functions COPYn : {0, 1} → {0, 1}n by COPY(x) =
(x, . . . , x). Then ĈOPYn is equal as a linear map to the Z-spider with a single input and n

outputs. Similarly, the X-spider with n inputs and a single output is equal to X̂ORn, while the
single input, single output NOT generator is, unsurprisingly, equal to N̂OT. H-boxes are not
induced by Boolean functions, as the linear map of an H-box contains negative numbers. Yet
composing an H-box with a further Hadamard gives the family of Boolean AND functions. In
summary:

COPY

. . .
↔ XOR

. . .
↔ AND

. . .
↔NOT ↔ ¬

. . .

. . .. . .
(5)

Seeing this, one might wonder why we simply did not choose some other generator that can
represent the AND directly. The reason for this is that it is in fact useful to represent the inputs
and outputs of AND asymmetrically.

Indeed, the COPY and XOR maps are symmetric under interchange of the inputs and outputs,
a property also known as flexsymmetry [8]:

. . . . . .
=

. . . . . .
= (6)

This property is not true for AND:

. . . . . .
̸= (7)

We can now re-express the rules of Figure 1 with all the generators presented as Boolean
functions, as shown in Figure 2. The first five rules in this figure are exactly equal to the rules
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(zs)
COPY

. . .
COPY

. . .

COPY
. . .. . .= (id) COPY =

(hs)
AND
. . .

AND
. . .

AND
. . .. . .= (hh) AND =

(ba1)
COPY

. . .

XOR
. . .

=
XOR
. . .

XOR
. . .

COPY

. . .
COPY

. . .
. . .

. . .
(ba2)

COPY

. . .

AND
. . .

=
AND
. . .

AND
. . .

COPY

. . .
COPY

. . .
. . .

. . .

(m)
NOT

NOT
= (o)

COPY

AND

NOT

AND

IS-EQUAL

=

IS-0 IS-0

COPY

AND

NOT

AND

Figure 2: The rules of the ZH-calculus presented as equations between Boolean functions.

of Figure 1 when we translate the Boolean functions back into the generators according to (5).
The other three are not equal, but can be proven to be equivalent using the first five equations
(which we will do below), and hence the two rulesets are equivalent. For the representation of (o)
we introduce two new Boolean ‘predicates’:

IS-EQUAL

:=
IS-0

:= (8)

Recall that the linear map corresponding to the cap is ⟨00| + ⟨11|, and hence we can interpret
IS-EQUAL as selecting for the case where both inputs are equal to one another. Similarly IS-0 is
just ⟨0| and selects for its input to be 0.

Let us demonstrate how the rules of Figure 2 suffice to prove the rules of Figure 1. We will
ignore scalar factors for these derivations (correct scalars can be introduced by repeated use of
Lemma 2.3). First, let us derive (ba1) from its Boolean counterpart. We denote the usage of the
‘Boolean version’ of (ba1) by (∗).

. . .

. . .. . .

. . .

= . . .. . .

. . .

. . .
(X) COPY

. . .

AND
. . .

= =
AND
. . .

AND
. . .

COPY

. . .
COPY

. . .
. . .

. . .
=

. . .

. . .

. . .. . . =
(hh)(5) (5)(∗)

Next, we prove (m) from the cancellation of two NOT gates. Here (∗) denotes the application of
the ‘Boolean version’ of (m):
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=
(zs)

=
(hh)

=
(X)

=
¬(NOT)

¬
=

NOT

NOT
= =

(hh)(5) (∗)

Finally, we derive (o) from the corresponding relation between Boolean functions, where here (∗)
denotes the Boolean version of (o):

=¬

¬

¬
=

¬

(hh)

COPY

AND

NOT

AND

IS-EQUAL

= =

IS-0 IS-0

COPY

AND

NOT

AND

=
¬

=
(X) (hh)

¬
=

¬
=

(5)

(5)

(8)

(8)

(∗)

The converse proofs that the rules of Figure 1 imply those of Figure 2 are similar (and will also
implicitly follow from completeness of the ZH-calculus).

Looking at Figure 2 we see that (zs) and (hs) express the associativity of COPY, respectively
AND, and that (id) and (hh) express the triviality of COPY and AND when they have only a single
input. We see that the only difference between (ba1) and (ba2) is which Boolean function comes
before the COPY. These rules are in fact special cases of the rule that any Boolean function copies
through COPY [14, Prop. 8.19]. The rule (m) expresses that NOT is self-inverse, and finally there
is (o), which requires some more explanation. On both sides of the equation, the middle input
is copied and sent to both AND gates, but one of the copies is negated. Hence the output of at
least one of the AND gates will be zero, so that the only way for the outputs of these AND gates
to be equal is if they are both zero. This is the property that (o) expresses. As this is still not
a particularly concise motivation, we present in Section 8.1 an alternative pair of rules that can
replace (o) and which do have a more concise motivation.

It might be surprising that this rule set expressing identities about Boolean functions suffices to
reason about quantum computation. However, what is not apparent from this rule set is that the
AND gate is ‘broken up’ into two parts, given by the H-boxes and the Hadamard. The Hadamard
gives the ‘Fourier transform’ between the Z and X spiders and relates the COPY and XOR maps
in a way that does not follow easily from their definition as Boolean functions. In fact, in [16], a
calculus for integer matrices is presented using XOR, COPY and AND as generators, and which
uses a rule set that is essentially the same as that of Figure 2, but with (o) replaced by the rules
we present in Section 8.1. Hence, the difference between this ‘classical’ calculus and our ‘quantum’
calculus is the usage of the Hadamard and the necessity of negative numbers this requires.

Beyond having a nice interpretation in terms of Boolean identities, our rule set is furthermore
arguably preferable to that of other (approximately) universal complete graphical calculi for qubits
in terms of simplicity. This is because:

1. It only requires a small number of rules (8, of which one is actually superfluous, cf. Sec-
tion 8.2).

2. Each of these rules only involve a few (derived) generators.

3. A priori, the set of generators does not involve any further information, such as a label taken
from a ring or group.
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4. As a result, no rule involves a ‘side condition’ on the elements of the ring or group.

While there are other calculi that satisfy items 1) and 2) — notably ZXπ/4 [29], universal
ZX [46], ring [39], and ZQ [38] also only require a small number of rules — each of these requires
either a complicated side condition on at least one the rules, or directly encodes properties of the
underlying ring in its generators. Other calculi like ZW [26] and ∆ZX [47] also do not have a lot
of rules, but many of them lack a clear interpretation.

This is of course not to say that those calculi are ‘worse’, but just that the ZH-calculus has a
particularly elegant set of rewrite rules, which somehow neatly capture the complexity of quantum
computing.

2.4 Basic derived rules
In this section we will prove some basic but useful rewrite rules that we will use throughout the
paper. Since the statements and proofs are often very short we will state all the lemmas first
and then all the proofs. Lemmas 2.3–2.8 are different ways to cancel or simplify scalar diagrams.
Lemmas 2.9–2.14 are various ways to simplify the derived generators. Lemmas 2.15–2.20 and 2.29
give ways to commute Z’s, NOTs and Hadamards through the other generators. Lemmas 2.21–
2.28 govern the interaction of states with generators (mostly showing that many states can copy
through a generator), and finally Lemma 2.30 is the Hopf rule that holds between the Z and X
spider. While some of these lemmas are direct special cases of the rules, in particular of (ba1) and
(ba2), we include them here for convenience of reference, and to give a more complete set of ‘state
commutation’ rules. Note that for Lemma 2.15, if m = 0, then instead of the ’s, there is a single

; similarly for Lemma 2.16, if m = 0, then instead of the ’s, there is a single .

Lemma 2.3.

=

Lemma 2.4.

=

Lemma 2.5.

=

Lemma 2.6.

=

Lemma 2.7.

=
¬

Lemma 2.8.

¬
=

Lemma 2.9.

¬ =

Lemma 2.10.

. . .

. . .

m

n

. . .

n

m

. . .

=

Lemma 2.11.

=

Lemma 2.12.

. . .

. . .

m

n

. . .

n

m

. . .
¬

¬
=

Lemma 2.13.

. . .
¬
. . .

m

n

. . .

n

m

. . .
¬

=

Lemma 2.14.

¬

¬
=

Lemma 2.15.

n

. . .

. . .

m

n

. . .

. . .

m

=
. . .

m− 1

Lemma 2.16.

n

. . .

. . .

m

n

. . .

. . .

m

= . . .

m− 1

Lemma 2.17.

¬
=

¬

Lemma 2.18.

=
¬

· · · · · ·
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Lemma 2.19.
n

. . .
=

n

. . .

¬

¬ ¬

Lemma 2.20.
n

. . .
=

n

. . .

¬

¬ ¬

Lemma 2.21.

=

Lemma 2.22.

¬ ¬

=
¬

Lemma 2.23.

=

Lemma 2.24.

¬ ¬

=
¬

Lemma 2.25.

¬ =

Lemma 2.26.

=

Lemma 2.27.

¬

=

Lemma 2.28.

¬ ¬

=
¬

Lemma 2.29.

=
¬

¬

¬

¬

Lemma 2.30.

=

We now prove all the above lemmas. The proofs are all quite basic and straightforward, except
that of Lemma 2.28 which is the only one to require (o).

Proof of Lemmas 2.3 and 2.4.

=
(ba1)

=
(hh)

=
(X)

=
(ba2)

=
(ba1)

■

Proof of Lemmas 2.5 and 2.6.

=

2.3

=
(ba2)

=

(X)

=
(X)
(m)

=
2.3

(hh)
(ba2)(hs)

■

Proof of Lemma 2.7.

=
¬

=
(NOT)

=
(X) 2.5

=
(X)

=

(hh)
(id)

2.3

■

Proof of Lemma 2.8.

¬
= = = =

(NOT) (X) (id)
(hh)

2.3
(hs)

■
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Proof of Lemma 2.9.

¬ == = =
(NOT) (X) (hh) 2.3

■

Proof of Lemma 2.10.

. . .

. . .

m

n

. . .

n

m

. . .

= =

. . .

. . .

=

. . .

. . .

=
. . .

. . .

(X) (hh)
2.3

(X)(zs)
■

Proof of Lemma 2.11.

= = = =
(X) (id) (hh) 2.3

■

Proof of Lemma 2.12.

¬

¬
=

(NOT)

=
2.3

=
(m)

=

(hh) (zs)
(zs)(X)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(X)

■

Proof of Lemma 2.13.

¬
=

(NOT)

=
2.3

(hh)
(X)

. . .

. . .

. . .

. . .

. . .

. . .

=

. . .

. . .

= ¬

. . .

. . .

(X)
(NOT)

(zs)
■

Proof of Lemma 2.14.

¬

¬
= = = =

(Z) (zs) (m)
(zs)
(id)

■

Proof of Lemma 2.15.
n

. . .

. . .

m

n

. . .

. . .

m

. . .

m

2.3

n

. . .

. . .

m

=

. . .

m . . .

m− 1

(hh)

=
(X)

2.3

■

Proof of Lemma 2.16.
n

. . .

(X)

. . .

m

n

. . .

. . .

m

=
. . .

(hh)

n

. . .

. . .

m

=
. . .

m

2.3

n

. . .

. . .

m

=
. . .

m− 1
■
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Proof of Lemma 2.17.

¬
=

¬
2.9

¬
(Z)

=

(hh)
2.3

■

Proof of Lemma 2.18.

=
¬

(NOT)
=

(ba2)
=

(hs)
2.3

=· · · · · · · · · · · ·
· · · ■

Proof of Lemma 2.19.

n

. . .

=

n

. . .

¬

¬ ¬

n

. . .

=

n

. . .

=

n

. . .n

=

n

. . .

. . .

n

=
(NOT) (ba1) 2.15

n
(ba2) (NOT)

. . . . . .
■

Proof of Lemma 2.20.

n

. . .

=

n

. . .

¬

¬ ¬

n

. . .

=

n

. . .

=

n

. . .

=
(Z) (ba1) (ba2) (Z)

■

Proof of Lemmas 2.21, 2.23, and 2.26. These are just applications of (ba1) and (ba2). ■

Proof of Lemma 2.22.

¬

(NOT)

=
2.11 2.15

=
(ba2)

=
(NOT)

= ¬ ¬

2.11

■

Proof of Lemma 2.24.

¬

(Z)

=
(id)

= ¬ ¬=
(ba2) (Z)

(id)

■

Proof of Lemma 2.25.

¬ =
(NOT)

=
2.23

=
(X)

=
2.5

■

Proof of Lemma 2.27.

¬

(NOT)

=
2.11

(hs)

=
2.3

■
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Proof of Lemma 2.28.

=
2.12

¬
¬

=
2.18

¬

=
(Z)

¬

¬ =
(hs) ¬

¬

2.17

¬

(Z)

=
(id)

2.3
2.11

=

(o)

¬ ¬

=
2.13 ¬

¬ =

¬ ¬
(hs) (X)

2.22
¬

2.3

=
(X) ¬

2.27

¬
= ¬

2.13
¬

2.3

■

Proof of Lemma 2.29.

=¬

¬

(Z)

2.13
¬ =

(ba1)
¬ =

(ba2)
¬ =

2.22

¬¬

¬(Z)
¬

¬
(NOT)

=
2.8

2.13

■

Proof of Lemma 2.30.

=

(id)
2.11

=

(zs)
2.10

=
(ba1)

=
2.23

=
2.4

2.21

■

2.5 Labelled H-boxes
The matrix corresponding to an H-box is filled with 1’s, except for the bottom right position where
there is a −1. Calculating the matrix of some other diagrams in the ZH-calculus, we see that their
matrix is similar, but instead of a −1 in the bottom right corner there is some other number a ∈ Z.
In order to make this connection clearer, we introduce some new notation, where we write an H-box
with a label of a inside it, to denote it is equal to a vector of 1’s with an a in the bottom position.
When talking about labelled H-boxes in text, we will often write H(a) to denote we are referring
to an H-box labelled by a (leaving the arity implicit, which should be clear from context).

We begin with H-boxes of arity 1, corresponding to vectors ( 1
a ), which we will define inductively

for non-negative integers using a ‘successor’ gadget; H-boxes labelled by negative integers will then
be defined from the positive ones using a ‘negate’ gadget.

Definition 2.31. Let

-1
:= (9)

and for any a ∈ Z such that a ≥ 0, define:

a
:=

a− 1

¬

(10)
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The ‘successor gadget’ used in this definition might appear a bit strange. As a matrix, it is in
fact equal to the previously considered triangle generator in the ZX-calculus [40, 47]:

:=
¬

This triangle has the following interpretation as a matrix:
t |

= |0⟩⟨0|+ |1⟩⟨0|+ |1⟩⟨1|

We could have introduced the triangle as an additional derived generator. However, as can be seen
from its matrix, it is not self-adjoint and hence the orientation of the node matters. To avoid the
complications that come from that, we elect not to use the triangle and to simply write out its
form as a ZH-diagram as in (10).

H(−1) is not the only H-box with a particularly simple representation. Indeed, we have

−1
=

¬

¬
=

¬

¬

2.28

¬
=:=

0

2.12
2.7(Z) 2.3

¬
(11)

=
0

¬
=

¬
=

1
:=

2.26
2.25
(zs)

2.3

¬
11

(12)

Definition 2.32. For any a ∈ Z such that a < −1, we define the corresponding degree-1 H-box
by applying a negate spider:

a
:=

−a
¬ (13)

The negation gadget plays nicely with the H-box labels. In particular by Lemma 2.14, H-box
labels satisfy −(−a) = a. We also have consistency with the simpler representations of H(a) for
a ∈ {−1, 0, 1}:

¬

1
= = =

−1

(12)
(Z)

(zs) (9)
(id)

¬

0
=

(11)
(Z)

=
2.21

=
0

(11)
2.5

Definition 2.33. Labelled H-boxes of arbitrary arity are defined as:

a
:=· · · · · ·

a

(14)

This is consistent with (hh) for arity-1 H-boxes of arbitrary label (using Lemma 2.3).
Certain higher-arity H-boxes have relatively simple label-free forms, in particular, for the −1-

labelled H-box we have:

=
· · ·

=
· · ·(hs)

−1 =
· · · · · ·

−1

(9)(14)
(15)
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for the 0-labelled H-box we have:

=
· · ·

=
· · ·2.16

0 =
· · · · · ·

0

(11)(14)
(16)

for the 1-labelled H-box we have:

1 =
· · · · · ·

1

=
· · ·

=
· · ·

=
· · ·(X) (ba2)(12)(14)

(17)

and for the 2-labelled H-box we have:

2
=

· · ·
· · ·

2 =

· · ·

¬

(10)

1

=

· · ·

¬

(14) (17)
(18)

There are some scalar cancellation rules associated to these labelled H-boxes:

Lemma 2.34. For any a ∈ Z:

=
a

Lemma 2.35.

2 =

Lemma 2.36.

2
=

¬

Proof of Lemma 2.34. First, note that if a < −1, we can change the sign:

−a
=

(13)

a

¬ =
(Z)

a

=
2.21

a
=
2.5

a

It thus suffices to consider −1 ≤ a. For these values, we prove the result by induction, with the
base case a = −1 being Lemma 2.5. The inductive step is

a+ 1
=

a

¬
(10)

=
(NOT)

a

=
2.11

a

=

(hs)

a

=
(X)

a

2.10

2.3
■

Proof of Lemma 2.35.

2 = ¬ =
2.17

=
2.26

=

(zs)
2.3(18) ¬

¬(Z)

=

2.14
(X)

(zs)

■

Proof of Lemma 2.36.

2
=

¬ ¬

¬ =
2.12

=
2.26

=

(zs)
2.3

(18)
(hh)
2.3

■
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2.6 !-box notation
Many of the calculations in the remainder of the paper are greatly simplified by the use of !-box
notation [34]. A !-box (pronounced ‘bang box’) in a string diagram represents a part of the diagram
that is able to fan out arbitrarily. That is, the contents of a !-box, along with any wires into or out
of the !-box, can be copied n times for any non-negative integer n. For example, the !-box diagram
below represents the following family of (concrete) string diagrams, one for each n:

←→

{
, , , , . . .

}

All of the resulting string diagrams are well-defined because all of our generators can have arbitrary
arities. We can also use !-boxes in diagram equations, as long as each !-box on the LHS has
a corresponding !-box on the RHS, and the inputs/outputs in each !-box match. Such a rule
represents a family of equations where each pair of corresponding !-boxes is replicated n times, e.g.
we can re-express (17) as:

1
= ←→

{
1 = ,

1
= ,

1
= , . . .

}
Note the dashed box on the right-hand side of the first equation denotes an empty diagram. With
this notation, the definition of grey spiders (1) becomes

:= (19)

Additionally, the rules (zs), (hs), (ba1), and (ba2) from Figure 1 become:

(zs) = (hs) = (ba1) = (ba2) =

Note that the red dashed NOT-edges defined in (2) behave well when crossing !-box borders.

←→
{

, , , , . . .

}

2.7 Annotated !-boxes
Many of our diagrams – in particular the normal forms that will be defined in Section 4.1 – have
a repeating structure involving multiple H-boxes with different labels. To write such diagrams
more concisely, we introduce a limited extension of the usual !-box notation, which allows !-boxes
to be indexed by the elements of a totally ordered finite set. Standard !-boxes allow infinite
families of diagrams to be represented in a single diagram, whereas annotated !-boxes simply offer
a more concise representation of a single diagram with repeated structure, instantiated once for
each element of the finite set.

Definition 2.37. An annotated !-box is a !-box with a label of the form ‘x ∈ X’, where X is a
totally ordered finite set and x is a variable that may appear in labels inside the !-box.

In the following, we will use a large box labelled Dx to denote an arbitrary ZH-diagram whose
labels may contain the parameter x. Given a diagram containing an annotated !-box, we recursively
define an equivalent diagram without the annotated !-box. The base case is that of a !-box indexed
over the empty set, which is instantiated zero times:
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x ∈ ∅

Dx

. . .

:=

. . .

For the recursive case, X is non-empty. Thus it has a maximum element, which we denote m :=
maxX. We construct an equivalent diagram where the !-box is indexed by the smaller set X \{m}.
This is done by copying the contents of the !-box (including all external wires) once, immediately
to the right of the !-box, and replacing each occurrence of x inside the new subdiagram by m:

x ∈ X

:=Dx

. . .

. . .

x ∈ X \ {m}

Dx

. . .

. . .

Dm

. . .

. . .

. . .

(20)

Remark 2.38. This definition straightforwardly extends to diagrams containing multiple disjoint
annotated !-boxes, which is all we need in this paper.

It can also be applied in reverse: any time a diagram contains multiple copies of the same
subdiagram, up to changes in labels, these can be combined into an annotated !-box.

We will often use bit strings for indexing annotated !-boxes; the motivation for this will become
clear with the introduction of normal-form diagrams in Section 4.1. As an example, indexing over
the finite set B2 := {00, 01, 10, 11}, we can write expressions such as:

a⃗b

b⃗ ∈ B2

:= a00 a01 a10 a11 (21)

Since annotated !-boxes correspond to unique diagrams (rather than infinite families of dia-
grams), their appearance in equations is less constrained than that of unlabelled !-boxes. Never-
theless, some care is needed if the annotated !-boxes contain inputs or outputs of the diagram as
a whole.

The simplest such equations correspond directly to allowed equations for unlabelled !-boxes:
they have corresponding annotated !-boxes on the LHS and RHS, which are both indexed by the
same finite set. Inputs and outputs coming out of a labelled !-box are matched to those of the
same index on the other side of the equality. For example:

a⃗b

b⃗ ∈ B2

a⃗b

b⃗ ∈ B2

=

 :=

 =
a01a00 a11a10

a01a00 a10 a11


If an annotated !-box contains diagram inputs or outputs, it must either have a corresponding
annotated !-box on the other side of the equality, or it must match a !-box labelled by a sub- or
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superset (possibly the empty set) as in (20). This is to avoid complications caused by the need to
keep the order of external wires consistent.

For annotated !-boxes that do not contain any diagram inputs or outputs, such ordering issues
do not arise because of the meta rule ‘only topology matters’. Lemmas 2.39 and 2.40 below give
examples of diagram equations where the annotated !-boxes on the two sides do not match in the
same strict way.

Note that we can recover the behaviour of normal, un-labelled !-boxes by interpreting a !-box
without a label as being indexed by an arbitrary totally ordered finite set, e.g.

= ←→ =

x ∈ X

y ∈ Y y ∈ Y

x ∈ X

(for any totally ordered finite sets X and Y )

In particular, this means that any derived rewrite rule involving un-labelled !-boxes can also be
applied to annotated !-boxes with arbitrary labels.

Lemma 2.39. An annotated !-box indexed by a bit string can be ‘expanded’ according to one of
the bits, as long as it does not contain any inputs or outputs of the diagram as a whole. Here, the
box labelled Db⃗ denotes an arbitrary diagram parameterised by b⃗.

b⃗ ∈ Bn

=Db⃗

c⃗ ∈ Bn−1

D0c⃗ D1c⃗

Proof. Note that the set Bn can be split into two pieces, based on whether the most significant bit
is 0 or 1:

Bn = {0c⃗ | c⃗ ∈ Bn−1} ⊎ {1c⃗ | c⃗ ∈ Bn−1}

The result therefore follows by completely expanding the annotated !-boxes on each side according
to Definition 2.37 and applying the meta-rule ‘only topology matters’. ■

Lemma 2.40. An annotated !-box containing two disconnected diagram components can be split
into two boxes indexed over the same set, as long as the original annotated !-box does not contain
any inputs or outputs of the diagram as a whole. Here, X is an arbitrary totally ordered finite set
and the boxes labelled Dx and D′

x denote arbitrary diagrams parameterised by x.

x ∈ X

Dx D′
x =

x ∈ X

Dx D′
x

x ∈ X

Accepted in Compositionality on 2022-11-07. Click on the title to verify. 20



Volume 5 Issue 5 ISSN 2631-4444

Proof. Note that for any set X,⊎
x∈X

{Dx, D
′
x} = {Dx | x ∈ X} ⊎ {D′

x | x ∈ X}

The result therefore follows follows from Definition 2.37 and the meta-rule ‘only topology matters’.
■

The condition about annotated !-boxes in Lemmas 2.39 and 2.40 not containing any inputs or
outputs of the diagram as a whole is to avoid issues caused by the need to keep the order of external
wires consistent. We have drawn the contents of the annotated !-boxes as being connected only to Z-
spiders, since this covers all our applications. Nevertheless, the result generalises straightforwardly
to X-spiders and H-boxes as well.

The following notation will be useful when working with annotated !-boxes.

Definition 2.41. Let Bn be the set of all n-bitstrings. For any b⃗ := b1 . . . bn ∈ Bn, define the
indexing map ι⃗b as follows:

ι⃗b = b⃗

. . .

. . .
=

(
¬

)1−b1
. . .

(
¬

)1−bn

,

where
(

¬
)1

= ¬ and
(

¬
)0

= , analogous to how
(

0 1
1 0

)0
=

(
1 0
0 1

)
.

Lemma 2.42. The ι⃗b operator copies through white spiders, i.e. for any b⃗ ∈ Bn:

b⃗

. . .

. . .
. . . . . .

. . .

b⃗

. . .
. . .

. . .
b⃗
. . .

=
. . .

Proof. This follows immediately from Lemma 2.19 via Definition 2.41. ■

3 Special cases of multiply, intro and average
Now that we have all the necessary definitions and basic rewrite rules, we can start our proof of
completeness. We will proceed as outlined in Section 1.2, first introducing three families of rewrite
rules that use the labelled H-boxes of Section 2.5, which will play an important part in proving
completeness. Proving that these rewrite rules hold in full generality is difficult however. In this
section we will only prove these rewrite rules for certain small integers. The general proofs are
postponed until Section 6, after we have introduced and studied the normal form diagrams in
Section 4.

Note that starting from here, we will no longer necessarily write all the lemmas used in a rewrite
step in a proof. In particular, we will often suppress uses of Lemma 2.3 and just treat and
as each other’s inverses. We will often also let uses of spider fusion (zs) be implicit.

3.1 The multiply rule
We claim that the following identity holds in the ZH-calculus for all integers a and b:

a b

=
ab

(Ma,b)

We refer to this as the multiply rule. Proving this is quite involved and will be postponed until
Section 5. The usefulness of this rule comes from the following generalisation to arbitrary arity.

Lemma 3.1. If the ZH-calculus proves Ma,b, then it also proves the following:
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a b

=
ab

Proof.

a b

=

a b

=

ba
b

=

a

a b

=
2.3 (ba2) (X)(hs)

ba

=

a b

=

ab
ab

==
ab

=
(hs) 2.3 (Ma,b) (hh) 2.3

■

This states that if two labelled H-boxes are connected to exactly the same set of white spiders
that we can fuse the H-boxes together by multiplying their labels. For certain small values of b we
can easily prove this rule.

Lemma 3.2. Let b ∈ {0, 1,−1}. Then the ZH-calculus proves (Ma,b) for all a ∈ Z.

a b

=
ab

Proof. By Lemma 3.1 it suffices to show the case where the !-box is expanded a single time. For
b = 1, this follows from (17) and (zs). For b = −1, this follows from (Z) and (13). For b = 0 we
calculate:

a 0

=

a

=

a

2.21
= 0

2.34(11)
■

3.2 The intro rule
A second family of rules that is particularly useful is the following:

a a=
¬

a
(Ia)

We refer to this as the intro rule as it allows us to introduce new wires to an H-box. As is the
case for the multiply rule, this rule has a generalisation to arbitrary arity. But unlike the multiply
rule, it will often be useful to apply the rule multiple times in succession to connect it to a larger
set of wires.

Lemma 3.3. If the ZH-calculus proves Ia, then it also proves the following !-boxed version3. The
natural numbers m and n are arbitrary, but note that the annotated !-box depends on n.

3We use a mixed notation without !-boxes for the inputs and outputs for easier intelligibility, but will occasionally
use the more formal notation with further !-boxes where the extra rigour can be achieved without confusing the
notation.
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a

=a
b⃗

b⃗ ∈ Bn
. . .

. . .

. . .

. . .

n

n

m

m

b⃗ ∈ Bn . . .

Proof. First, let us prove the following equation:

==
2.15 (ba2) (22)

Now, we prove the claim by induction on n, beginning with the base case where n = 1. Note that
n = 0 is valid but trivial. In the derivation below we use a !-box to show that m is arbitrary.

=a

a
=

¬

aa
=

¬

a a
¬

a= a
(14) (Ia) (22) (14)

For the inductive step, assume the lemma holds for n copies of the lower white node. In the
calculation below, (*) denotes the induction step.

a

=a
b⃗

b⃗ ∈ Bn
. . .

. . .

. . .

. . .

n

n

m

m

b⃗ ∈ Bn

=a

. . .

. . .

n+ 1

m

b⃗ ∈ Bn+1
=

b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

a(*) (14)
(zs)

. . . . . .
2.39

=
b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

a
(Ia)

a
¬

. . . =

b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

a

(22)

a ¬
. . .

. . .

=

b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

(14)
¬

. . .

a a
(zs)
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=
b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

2.42

¬

. . .

a a

b⃗

. . .

. . .

=
b⃗

b⃗ ∈ Bn

. . .

. . .

n

m

(zs)

¬

. . .

a a

b⃗

. . . =
b⃗

b⃗ ∈ Bn+1

. . .

. . .

n

m

. . .

a2.39
■

Example 3.4. When applying the !-boxed intro rule to an H-box and n white spiders, the H-box is
copied 2n times, with each copy being connected to the n white spiders via a different combination
of NOT edges and plain edges. Every wire originally incident on the H-box is replaced by a white
spider, which connects to all the new H-boxes. For example, with n = 2 and a single wire incident
on the original H-box:

a = a a a a

This corresponds to the outer product(
1
a

) ((
1 1

)
⊗

(
1 1

))
=

(
1
a

) (
1 1 1 1

)
=

(
1 1 1 1
a a a a

)
,

as will become clear from the normal form definition in Section 4.1.

We will prove that the intro rule holds for all integers in Section 6. But first we will directly
prove the intro rule for certain simple integers. To do this we will need two lemmas.

Lemma 3.5.

=
¬

Lemma 3.6.

=

2

Proof of Lemma 3.5. Going from right to left:

¬
=

¬
=

(o)
2.18(o)

=

¬

=

¬

=
¬

=
(zs) (ba2) 2.30
2.27

2.27
■
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Proof of Lemma 3.6. We prove the !-box-free version, with the generalisation following the same
proof as for Lemma 3.1.

=

2
¬

=
¬

(o)
(o)

=
2.18

=
(M-1,-1)

=
(X)

=
2.4(18)

■

Lemma 3.7. Let a ∈ {−1, 0, 1, 2}. Then the ZH-calculus proves Ia and its !-boxed generalisation:

a

=a
b⃗

b⃗ ∈ Bn
. . .

. . .

. . .

. . .

n

n

m

m

b⃗ ∈ Bn . . .

Proof. By Lemma 3.3 it suffices to show Eq. (Ia). We prove by case distinction on a ∈ {−1, 0, 1, 2}:

−1 = =
¬

=
¬

= −1 −1
¬

(9)

(id)
2.15

=

(Z)

¬
2.30

=
2.16 2.17 (15)

1 1
1

=¬= =
(12)

(zs)
2.25 (17)

¬

=00 0
== ¬ = ¬ = =

¬
=

¬
= ¬

(o) 2.18 (ba2)
¬

(16)
(zs)
2.27

2.30
2.13

2.27
(X) (11)

=
¬

2 2
3.6

¬
2 22 =

3.5

¬
2 2

2

¬

=
3.6

= 2

(zs)
2.25

¬
2

2

¬

=

(zs)

2

2

¬

2.19
=
3.6

2

¬

■
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3.3 The average rule
The final family of rewrite rules we will need is the following.

a b
=

a+ b
¬

2
¬ (Aa,b)

We call this rule the average rule, because on the right-hand side it adds the numbers together,
but also multiplies it with a ‘NOT 2’ H-box, that acts like multiplying by a half; cf. Lemma 8.7.
We will prove that this rule holds for all integers in Section 6. For now, we will prove it for certain
combinations of integers.

Lemma 3.8. If the ZH-calculus proves (Aa,b), then it also proves the following:

¬

=
ba

a+ b 2
¬

Proof.

¬
a b

=

¬
ba

¬

=

a b a

¬

=

b

=
(hs)

(X)
(ba2) (hs) (Aa,b)

a+ b 2
¬

■

Lemma 3.9. The ZH-calculus proves (Aa,0) for all a ∈ Z.

a 0 =
a

¬
2

¬

Proof.

a 0 =

a

¬

2
¬

(14)
(id)

0
¬

a

=
(I0)

0¬

a

0
¬

=
(M0,-1)

0¬

a

0
¬

=
(I-1)

0

a

0
¬

=
(I0)

a

0 =

(id)

a 0
(hh)

=

2.12

a

(16) ¬ =
(18)

¬
■

Lemma 3.10. Let a be an integer for which we have proven (Ia). Then we can prove (Aa,−a).
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¬

−aa =
¬

200=

Proof. The first diagram is transformed into the last one as follows:

a −a =
0

¬
2

¬
a −a

(id)

¬

= a a
¬

(Ma,−1)
= a

(Ia)
= a

(X)
2.3

= a

2.21
=

2

2.34

¬

2.36
=

2.21
(11)

=

2
¬

2.13

The equality to the middle diagram follows by applying Eq. (11) instead of Lemma 2.36 in the
sixth rewrite step. ■

Lemma 3.11. Let a be an integer for which we have proven (Ia). Then we can simplify the
left-hand side of (Aa,a) to the diagram in the middle. If we also have proven (M2,a), then we can
prove (Aa,a) outright.

a =
¬

22a
¬

aa =

Proof.

¬

=aa aa = a

(Ia)(zs)
(id)

= ¬
a2

(I2)

¬

= a

2.35

2 =
¬

22a

(M2,a)

2
■

Lemma 3.12. Let a, b ∈ {0, 1,−1}. Then the ZH-calculus proves (Aa,b).

a b
=

a+ b
¬

2
¬

Proof. If one of a and b is 0 this follows from Lemma 3.9. The remaining cases satisfy a, b ∈ {1,−1},
in particular either a = b or a = −b.

We have I1 and I−1 by Lemma 3.7, and we have M2,1 and M2,−1 by Lemma 3.2. Hence the
result follows from Lemmas 3.10 and 3.11. ■

4 Normal forms
Our completeness proof relies on showing that every diagram can be reduced to a certain unique
normal form. In this section we will introduce this normal form, and establish a strategy for
reducing diagrams to normal form. This strategy requires that we have proven the multiply,
intro, and average rule for all integers. Hence, this section results in a completeness proof that
is ‘conditional’ on the multiply, intro, and average rule being provable in the ZH-calculus for all
integers.
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4.1 Normal form diagrams
Our normal form diagrams will be ‘state-like’ in that all of the wires will be connected to the top
of the diagram. This is because we can convert between states and operators by simply bending
inputs to become outputs and vice versa. This transforming of an operator into a state is known
as map-state duality or the Choi-Jamio lkowski isomorphism.

A key part of this normal form, is that we can easily represent the Schur product of two states,
i.e. the pointwise product, in the ZH-calculus. For states ψ, ϕ, write ψ ∗ ϕ for their Schur product.
Then representing states by large white boxes we have the following identity:

ψ ϕ
ψ∗ϕ
· · ·

:= · · · · · ·

· · ·

Here the i-th output of ψ and ϕ is plugged into a for each i. It follows from (zs) that ∗ is
associative and commutative, so we can write k-fold Schur products ψ1 ∗ ψ2 ∗ . . . ∗ ψk without
ambiguity. For any finite set J with |J | = k, let

∏
j∈J ψj be the k-fold Schur product.

As shown in the next lemma, the indexing maps ι⃗b from Definition 2.41 interact nicely with
the Schur product.

Lemma 4.1. The ZH-calculus enables the computation of the Schur product of two maps of the
form ι⃗b ◦Hn(x) and ι⃗b ◦Hn(y) for any b⃗ ∈ Bn and x, y for which we have proven (Mx,y):

. . . . . .

b⃗

yx

b⃗
. . . . . .

. . .

=
. . .

. . .

xy

b⃗

Proof. Apply Lemma 2.42, followed by Lemma 3.1.
■

Definition 4.2. A normal-form diagram in the ZH-calculus is a diagram of the form

k
∏

b⃗∈Bn

(
ι⃗b ◦Hn(a⃗b)

)
(23)

where Hn(a⃗b) is the arity-n H-box (considered as a state) labelled by some values a⃗b for all b⃗ ∈ Bn,
and k ∈ N. We say the normal-form is reduced when either k = 0 or at least one of the labels a⃗b
cannot be factored by two (i.e. is odd).

A normal form diagram can be seen as a collection of n spiders, fanning out to 2n H-boxes,
each with a distinct configuration of NOT’s corresponding to the 2n bitstrings in Bn, together with
a global scalar. Diagrammatically, normal forms are:

a⃗b

b⃗

. . .

b⃗ ∈ Bn

. . .

. . .

..
.

k

n

:=

a0...0

0 . . . 0 0 . . . 01

a0...01

1 . . . 1

a1...1

. . .

. . .

. . .

. . . . . .

. . .

. . .

. . .

..
.

k

n

(24)

Remark 4.3. Note that the number of outputs in a normal form diagram is the same as the
exponent of B in the !-box annotation. To avoid cluttering the notation too much, we will only
rarely make this explicit in diagrams.

The additional condition for being reduced ensures uniqueness of normal form diagrams.
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Theorem 4.4. Reduced normal forms are unique. In particular:
u

v k
∏

b⃗∈Bn

(
ι⃗b ◦Hn(a⃗b)

)}~ =
∑

b⃗∈Bn

1
2k
a⃗b

∣∣∣⃗b〉 . (25)

Proof. The map ι⃗b is a permutation that acts on computational basis elements as |⃗c⟩ 7→
∣∣∣⃗c⊕ b⃗⊕ 1⃗

〉
.

In particular, it sends the basis element
∣∣⃗1〉

to
∣∣∣⃗b〉. Hence ι⃗b ◦Hn(a⃗b) is a vector with a⃗b in the b⃗-th

component and 1 everywhere else. The Schur product of all such vectors indeed gives the RHS of
(25) up to the global scalar of 1

2k that is added by k.
So now suppose two different normal form diagrams have equal interpretation (25). We need

to show that the diagrams are then equal, which boils down to showing k = k′ and a⃗b = a′
b⃗

for all
b⃗ ∈ Bn. Suppose without loss of generality that k ≤ k′. Then a⃗b = 2k

2k′ a′
b⃗
. The left-hand side is

an integer, and so the right-hand side must be so as well. Hence, if k < k′, then all the a′
b⃗

must
be divisible by 2, which contradicts the assumption of being a reduced normal form (since in this
case k′ ̸= 0). Hence, k = k′, and hence a⃗b = a′

b⃗
as required. ■

Because reduced normal forms are unique, two diagrams in reduced normal form are equal if
and only if the linear maps the diagrams represent are equal, and hence, the calculus is complete
if we can bring all diagrams to reduced normal form.

Some simple diagrams can readily be brought to reduced normal form:

Lemma 4.5. Any H-box can be brought into normal form using the rules of the ZH-calculus.

Proof. The matrix of an H-box Hn(a) has 1’s in every entry but the very last one. Hence, to bring
an H-box into normal form, we just need to introduce ‘dummy’ 1’s for every other matrix entry.
We demonstrate the principle using a binary H-box but the argument is analogous for any other
arity:

a =
a a

=

a

=
¬ ¬ ¬ ¬ ¬¬

=
¬ ¬

a1 1 1

(id) (zs) 2.25 (17)
■

Lemma 4.6.

=

00

¬ ¬

Proof.

=
(hh)
(id)
(zs)

=
(M-1,-1)

=
(zs)

=
2.18

¬

¬
=
(o)

¬

¬

=¬ ¬=

00

¬ ¬

(16)
2.3

■

Lemma 4.7. The diagram of a single cup can be brought into normal form:

= NF
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Proof. Starting from the normal form we work our way back:

=
4.6(zs)

=

2.25

=

00
¬ ¬¬ ¬

1 1 00
¬ ¬¬ ¬

(17)

00
¬ ¬

■

Before we continue to the more general procedure to reduce diagrams to normal form we have
to prove some results about how to deal with scalars and factors of 2 in normal forms in order to
reduce the diagram.

Lemma 4.8. Given integers a⃗b for which we have proven (M2,a
b⃗
) we can prove:

b⃗

. . .
2a⃗b

=

. . .
b⃗ ∈ Bn

b⃗

. . .
a⃗b

. . .
b⃗ ∈ Bn

2

Proof.

b⃗

. . .
2a⃗b

=

. . .
b⃗ ∈ Bn

b⃗

. . .
a⃗b

. . .
b⃗ ∈ Bn

2 b⃗

. . .
a⃗b

. . .
b⃗ ∈ Bn

(I2)
b⃗

. . .

2

=
4.1

■

Proposition 4.9. Suppose we have proven (M2,a) for all integers a ∈ Z. Given a diagram in
normal form, we can bring it to reduced normal form.

Proof. If there are no ’s present we are done. Furthermore, if any of the a⃗b is odd, we are also
done. So suppose there is at least one and that all the a⃗b are even. Then we can factor them all
as 2 a

b⃗

2 and apply Lemma 4.8 in reverse to introduce a scalar 2 to cancel a star (using Lemma 2.35
and Lemma 2.3). We keep repeating this procedure until either the ’s run out, or one of the a⃗b
becomes odd. ■

4.2 Conditional reduction to normal form
For bigger diagrams we will show that if a part of the diagram is in normal form, we can ‘consume’
the rest of the diagram generator by generator to write the entire diagram into normal form.

This procedure requires that we have proven the multiply, average and intro rule for all integers.
Since this is difficult to do, we will first show the general procedure for bringing a diagram to normal
form assuming we have proven these identities. We will then be able to ‘bootstrap’ the proof for
the general multiply, average and intro rule using the simple cases of these rules we have already
proven.

We need to show that any generator of the ZH-calculus — H-boxes, Z-spiders, and any type
of wiring — can be brought to normal form, that tensor products of normal forms can be brought
to normal form, and that any diagram consisting of a normal form composed with a generator in
some way can also be brought to normal form. Once we have this we know that any ZH-diagram
can be brought to normal form, and hence, if two ZH-diagrams represent the same linear map they
must then be equal to the same ZH-diagram.

Proposition 4.10. Let D be a diagram consisting of a normal form diagram for which we have
proven (Ia)for every a in the normal form, juxtaposed with . Then D can be brought into normal
form using the rules of the ZH-calculus:

NF
. . . . . .

NF ′=

n n+ 1
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Proof. Starting from the left-hand side, which we expand using the indexed !-box notation, we
calculate:

b⃗

. . .

(zs)

a⃗b

=

. . .
b⃗ ∈ Bn

. . .

. . .
b⃗ ∈ Bn

a⃗b

b⃗

. . .
b⃗ ∈ Bn

=
b⃗(Ia)

a⃗b

¬

a⃗b

. . .

b⃗ ∈ Bn

=
2.42

b⃗

. . .

. . .

b⃗

a⃗b a⃗b

. . .

¬

. . .

. . . . . .2.41

a⃗b

(zs)
. . .

. . . . . .
a⃗b

b⃗0 b⃗1=

b⃗ ∈ Bn
. . .

The last diagram is a normal form diagram with n+ 1 outputs, i.e. the desired result. ■

Proposition 4.11. The Schur product of two normal form diagrams can be brought into normal
form using the rules of the ZH-calculus, when we have proven (Ma,b) for every pair a and b occurring
in the normal forms.

. . . . . .

NF2NF1

. . .
= . . .

NF ′

Proof. This follows from (zs) and Lemma 4.1. ■

Corollary 4.12. The tensor product of two normal form diagrams can be brought into normal
form using the rules of the ZH-calculus, when we have proven (Ia) for all a occurring in the normal
forms, and (Ma,b) for all a and b in the normal forms.

Proof. A tensor product can be expressed as

. . . . . .

NF2NF1
= . . .

NF1

. . . . . .

NF2

. . .
. . . . . .

n m
n m

m n

(zs)
(id)

The diagram NF1 and the leftmost m copies of can be combined into one normal-form diagram
with (n + m) outputs by successive applications of Proposition 4.10. Similarly, the rightmost n
copies of and NF2 can be combined into one normal-form diagram with (n+m) outputs. The
desired result then follows by Proposition 4.11. ■

The most difficult step is to show that contraction with a white dot preserves normal forms.
This requires a couple of lemmas.

First, we present a more general form of the (o) rule that allows us to disconnect wires in a
more general way.

Lemma 4.13. Instead of just wires, white spiders between an arbitrary number of H-boxes can
be split using (o):

=
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Proof.

=
(hs)

=
2.18

=

2.19
(zs)

=
2.19 ¬

¬

=
¬

¬

(ba2)
(zs)

=
¬

¬

(o)
=

(ba2)

¬

¬

(zs)
=

¬ ¬

2.19
(zs) ¬

=
¬2.19

(zs)
¬

=
¬2.18 ¬

¬ ¬

=
¬ ¬

¬ ¬

(hs)
■

In practice, Lemma 4.13 is usually applied in diagrams that are close to normal form, so that
the H-boxes are connected to multiple white spiders. This allows the lemma to be applied multiple
times in succession.

Example 4.14. Consider the following derivation, which will arise in the proof of Proposition 6.2.
For each rewrite step, the parts of the diagram that are uninvolved have been greyed out to clarify
the process.

In the first application of Lemma 4.13, the top leftmost spider is the important one. The rewrite
step splits the bottom spider to separate the first H-box from the others, as the first H-box is the
only one that is connected to the leftmost spider via an X node:

=
4.13

= =

Now, applying the lemma to the middle spider would have no effect as all H-boxes are connected
to the middle spider via the same kind of wire (namely, simple ones). Thus, it remains to apply
Lemma 4.13 according to the top rightmost spider. This step splits the bottom spider to separate
the second H-box from the others because the second H-box is connected to the rightmost spider
via an X node while the others are connected by simple wires:

=
4.13

= =
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Lemma 4.15. Disconnect lemma:4

. . .

b⃗ ∈ Bn−1

¬

. . .
a⃗b1

. . .
a⃗b0

b⃗ b⃗

. . .. . .

n− 1

=

. . .

b⃗ ∈ Bn−1

¬

. . .
a⃗b1

. . .
a⃗b0

b⃗ b⃗

. . .. . .

... 2n−1 − 1

n− 1

(26)

Proof. If n = 1, the !-boxes on both sides are indexed over the one-element set, so the result follows
straightforwardly from the definition of annotated !-boxes in Section 2.7 and removal of the white
spider via (id). Note that there are zero stars in this case.

For n > 1, by Lemma 2.39, we can equivalently express the LHS as

¬

a0⃗b0

0⃗b

. . .

. . .
0⃗b
. . .
a0⃗b1

b⃗ ∈ Bn−2

¬

. . .
a1⃗b1

. . .
a1⃗b0

1⃗b 1⃗b

. . .. . .. . .. . . (14)
=

¬

a0⃗b0

b⃗

. . .

. . .

¬ b⃗

. . .
a0⃗b1

¬

b⃗ ∈ Bn−2

¬

. . .
a1⃗b1

. . .
a1⃗b0

b⃗ b⃗

. . .. . .. . .. . .

We can then apply Lemma 4.13 to split the bottom spider in two:

· · ·
4.13
=

¬

a0⃗b0

b⃗

. . .

. . .

¬ b⃗

. . .
a0⃗b1

¬

b⃗ ∈ Bn−2

¬

. . .
a1⃗b1

. . .
a1⃗b0

b⃗ b⃗

. . .. . .. . .. . . (14)
=

¬

a0⃗b0

0⃗b

. . .

. . .
0⃗b
. . .
a0⃗b1

b⃗ ∈ Bn−2

¬

. . .
a1⃗b1

. . .
a1⃗b0

1⃗b 1⃗b

. . .. . .. . .. . .

By Lemma 2.40, we can then split the !-box into two parts, indexed over the same set to obtain:

¬

a0⃗b0

0⃗b

. . .

. . .
0⃗b
. . .
a0⃗b1

b⃗ ∈ Bn−2

¬

. . .
a1⃗b1

. . .
a1⃗b0

1⃗b 1⃗b

. . .. . .. . .. . .
b⃗ ∈ Bn−2

4A similar but incorrectly scaled result is given as Lemma B.3 in [5]. Since any application of the lemma in that
paper is always combined with an also incorrectly-scaled application of the average rule, the scalars work out there
overall anyway. We give the correct scalar factors here.
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We now have two copies of a graph which is very similar to the LHS of (26), but for one fewer bit.
We can thus repeat the process above to split each of the two spiders using the second bit of the
bitstring, then the third, and so on, until -spiders only connect pairs of H-spiders that disagree
on the least significant bit.

Each application of Lemma 4.13 introduces a star, so we need to count how many times that
lemma is used in total. For the first bit of Bn−1, the lemma is applied once. Afterwards, the
diagram has separated into two indexed !-boxes and Lemma 4.13 needs to be applied to each part.
Continuing in this way, the number of !-boxes which need to be split doubles in each step. Hence
we introduce 1 + 2 + . . .+ 2n−2 = 2n−1 − 1 stars.

Note that at the end of this process, each !-box will be indexed over a one-element set, so
according to the definition of annotated !-boxes we can simply drop them. By replacing 2-legged

-spiders with cups using (id), and applying the definition of annotated !-boxes to re-introduce
indexing over Bn−1, we obtain the RHS of (26). ■

Lemma 4.16. For any a⃗b we have
. . .

b⃗ ∈ Bn

. . .
b⃗

a⃗b 2
¬

. . .

a⃗b

b⃗ ∈ Bn

. . .
b⃗

=

. . .

2n − 1

Proof. First, we introduce a scalar H(2) and get this in the !-box using Lemma 3.3 (the !-boxed
form of the Intro rule):

. . .

b⃗ ∈ Bn

. . .

. . .
=

b⃗
2.3

a⃗b 2
¬

2

. . .

b⃗ ∈ Bn

. . .

. . .
=

b⃗(I2)

a⃗b 2
¬

2

. . .
b⃗

. . .

. . .

b⃗ ∈ Bn

. . .

. . .=
b⃗

(zs)

a⃗b 2
¬

. . .
b⃗

. . .

(14)

2

. . .

b⃗ ∈ Bn

=

a⃗b 2
¬

. . .
b⃗

. . .

(ba2)

2

2.42

. . .
b⃗ ∈ Bn

. . .
b⃗

a⃗b 2
¬

2.35

And then we prepare the diagram to apply Lemma 3.6:

· · ·

. . .

b⃗ ∈ Bn

a⃗b 2
¬

. . .
b⃗

. . .

2

=

2.16
2.3

. . .

b⃗ ∈ Bn

a⃗b

. . .
b⃗

. . .

2

=

(zs)
(18)

. . .

b⃗ ∈ Bn

a⃗b

. . .
b⃗

. . .

=

3.6
(id)

. . .

b⃗ ∈ Bn

. . .
b⃗

. . .

a⃗b
=

(14)

. . .

2n − 1

2.32.12

Note that, in the last step, (14) introduces a scalar white dot in each !-box, resulting in 2n white
dots, one of which is cancelled by the outside the !-box. ■
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Proposition 4.17. The diagram resulting from applying to an output of a normal form diagram
can be brought into normal form, when we have proven (Aa,b) for all a and b in the normal form:

. . .

NF
= . . .

NF ′

Proof. Starting from an arbitrary normal form, with a plugged into the right most output, we
first expand the annotated !-box:

. . .

. . .
a⃗b

b⃗

. . .

b⃗ ∈ Bn

=

a⃗b0

b⃗0

b⃗ ∈ Bn−1

. . .

. . .

. . .
b⃗1

. . .

a⃗b1

. . .

. . .

. . . . . .

. . .

b⃗ ∈ Bn−1

. . .

a⃗b1a⃗b0

b⃗= ¬ b⃗

b⃗ ∈ Bn−1

. . . . . .
a⃗b0 a⃗b1

b⃗ b⃗

. . .

. . .. . .

¬

=
2.39

Now the diagram is ready for application of Lemma 4.15, followed by the average rule:

· · ·

b⃗ ∈ Bn−1

. . . . . .
a⃗b0 a⃗b1

b⃗ b⃗

. . .

. . .. . .

¬

=
4.15

=

. . .

. . .

¬

. . .
b⃗

a⃗b0

b⃗

a⃗b1

. . .

b⃗ ∈ Bn−1

. . .
=

¬

. . .

a⃗b0 a⃗b1

b⃗

. . .

b⃗ ∈ Bn−1

. . .

. . .

b⃗ ∈ Bn−1

. . .

. . .
=

b⃗(zs) 2.42 (Aa,b)

a⃗b0 + a⃗b1 2
¬

. . .

2n−1 − 1

. . .

2n−1 − 1

. . .

2n−1 − 1

. . .

2n−1 − 1

This diagram can now be brought to normal form by application of Lemma 4.16. Note the stars
exactly cancel the white dots introduced by that lemma. ■

Our strategy will now be to show that any diagram can be decomposed into H-boxes, combined
via the operations of extension, convolution, and contraction. This will give our completeness
proof.

To simplify the decomposition of diagrams into H-boxes, we prove a few corollaries.

Corollary 4.18. The diagram resulting from applying to a pair of outputs of a normal form
diagram can be brought into normal form, when we have proven (Ia) and (Aa,b) for all a and b in
the normal form.

. . .

NF
= . . .

NF′
(27)

Proof. Applying a to a pair of outputs has the same result as convolving with a cup, then
contracting one of the outputs. That is, we can decompose (27) as follows:

= . . .

NF. . .

. . .

. . .

NF
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then apply Lemma 4.7 and Propositions 4.10, 4.11, and 4.17. ■

Corollary 4.19. A diagram consisting of a cap applied to a normal form diagram can be trans-
formed into a normal form diagram, when we have proven (Ia), (Aa,b) and (Aa′,b′) for all a and b
in the normal form and for every a′ and b′ that are sums of labels in the normal form:

. . .

NF
= . . .

NF ′

Proof. Since the cap can be decomposed as ◦ , the result follows immediately from Corol-
lary 4.18 and Proposition 4.17. ■

Thanks to Corollaries 4.12 and 4.19, we are able to turn any diagram of normal forms into
a normal form. It only remains to show that the generators of the ZH-calculus can themselves
be made into normal forms. We have already shown the result for H-boxes (Lemma 4.5), so the
following will be sufficient:

Lemma 4.20. Any Z-spider can be brought into normal form using the rules of the ZH-calculus.

Proof. As shown in Eq. (12), is already a labelled H-box and thus is in normal form. By (zs),
= , and hence it can be brought into normal form using Corollaries 4.12 and 4.19. This covers

the cases of Z-spiders with 0 or 1 incident wires.
We can decompose any Z-spider with n ≥ 2 incident wires as a tensor product of (n− 1) cups,

with each cup -ed with its neighbours:

= · · ·· · ·
(zs)

If n = 2, no are needed and the equality is by (id) instead of (zs). In either case, the diagram
can be brought into normal form by applying Lemma 4.7 and Corollaries 4.12 and 4.18. The
intermediate normal forms only involve H-boxes labelled by a 0 and 1 and hence we have already
proven the necessary cases of multiply, intro and average to prove this. ■

Proposition 4.21. If the ZH-calculus proves (Ma,b), (Ia), and (Aa,b) for all integers a and b, then
the ZH-calculus is complete, i.e. for any two ZH-diagrams D1 and D2, if JD1K = JD2K then D1 is
transformable into D2 using the rules of the ZH-calculus.

Proof. By Theorem 4.4, it suffices to show that any ZH diagram can be brought into reduced
normal form. Lemmas 4.5 and 4.20 suffice to turn any generator into normal form. Then using
Corollary 4.12 we can turn any tensor product of generators into a normal form and with Corol-
lary 4.19 we can then apply any sort of wiring and reduce it to normal form. Finally, Proposition 4.9
allows us to bring the normal form to reduced normal form. ■

To prove completeness, it now remains to prove (Ma,b), (Ia), and (Aa,b) for all integers a and
b. To assist in this, let us prove a few lemmas that will help reduce diagrams to normal form when
we have these rules for certain values of a and b. As we already have many individual cases of
those rules — see Lemma 3.2 for (Ma,b) and Lemma 3.7 for (Ia), as well as Section 3.3 for (Aa,b)
— these lemmas can already be applied to many diagrams.

Lemma 4.22. Suppose we have (Iabc⃗
) for all b ∈ B, c⃗ ∈ Bn−1. Then we can consume a Hadamard

gate into the normal form:

bc⃗

. . .
abc⃗

. . .

=

c⃗ ∈ Bn−1
b ∈ B

bc⃗

. . .
a0c⃗

. . .

c⃗ ∈ Bn−1

bc⃗

. . .

(−1)ba1c⃗

¬

b ∈ B

... 2n − 1
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If we also have Aa0c⃗,a1c⃗
and Aa0c⃗,−a1c⃗

for all c⃗ ∈ Bn−1, then in fact:

bc⃗

. . .
abc⃗

. . .

= bc⃗

. . .

. . .
c⃗ ∈ Bn−1

a0c⃗ + (−1)ba1c⃗

b ∈ B
c⃗ ∈ Bn−1
b ∈ B

Proof. We start by manipulating the !-boxes and layout, and then perform the rewriting:

bc⃗

. . .
abc⃗

. . .
c⃗ ∈ Bn−1
b ∈ B

0c⃗
. . .
a0c⃗

. . .
c⃗ ∈ Bn−1

= 1c⃗
. . .
a1c⃗

c⃗

. . .
a0c⃗

. . .
c⃗ ∈ Bn−1

= c⃗

. . .
a1c⃗

¬

(id)2.39

c⃗

. . .
a0c⃗

. . .

c⃗ ∈ Bn−1

=
c⃗

. . .
a1c⃗

¬

c⃗

. . .

−1
=

bc⃗

. . .
a0c⃗

. . .

c⃗ ∈ Bn−1

bc⃗

. . .
a1c⃗

¬

bc⃗

. . .

(−1)b

b ∈ B

(I-1)
(Ia1c⃗

)
(Ia0c⃗

)

(17)
2.25

2.39

=
bc⃗

. . .
a0c⃗

. . .

c⃗ ∈ Bn−1

bc⃗

. . .

(−1)ba1c⃗

¬

b ∈ B

4.15

. . .

2n − 1

=
bc⃗

. . .
a0c⃗

. . .

c⃗ ∈ Bn−1

bc⃗

. . .

(−1)ba1c⃗

¬

b ∈ B

(M−1,a1c⃗
)

=

bc⃗

. . .

. . .

c⃗ ∈ Bn−1
b ∈ B

a0c⃗ + (−1)ba1c⃗ 2
¬

(Aa0c⃗,(−1)ba1c⃗
)

... 2n+1 − 1

=

bc⃗

. . .

. . .

c⃗ ∈ Bn−1

a0c⃗ + (−1)ba1c⃗

b ∈ B

4.16
2.3

■

The following lemma allows us to (dis)connect integer-labelled H-boxes that are connected to
a superset of a given 0-labelled H-box.

Lemma 4.23. For any integer a,
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0 a

=

0

Proof.

0 a

=

0

=

= 0= =

(hs)

(ba2)

2.23
2.26

a a

a a

(X)
(16)

(X)

(16)

0 a

=
2.19

¬ ¬ ¬

¬ ¬

¬ ¬¬

¬ ¬ (zs)

(14)

0
=

2.34
2.25

a

¬
¬(id)

■

Lemma 4.24. Suppose we have proven (Iabc⃗
) for all b ∈ B, c⃗ ∈ Bn−1 and (Aa0c⃗,a1c⃗

) for all
c⃗ ∈ Bn−1, then we can consume an H(0) into the normal form:

bc⃗

. . .
abc⃗

. . .0

= bc⃗

. . .

. . .
c⃗ ∈ Bn−1

a0c⃗ + (1− b)a1c⃗

b ∈ B
c⃗ ∈ Bn−1
b ∈ B

Proof. The proof is analogous to that of Lemma 4.22, using Lemma 4.23 instead of (M−1,a1c⃗
). ■

5 Arithmetic
In this section we show we can do simple arithmetic with labelled H-boxes. Namely we will show
first that the following equation holds for all integers a and b.

=

a b

0
a+ b

(28)

Hence, we can add H-box labels together. This will be crucial for when we will prove the general
average rule in Section 6. Secondly, we will prove the multiply rule for all integers.

5.1 Proving addition for natural numbers
First we will prove (28) for natural numbers, which requires showing that (28) acts as expected
when b = 1, and that furthermore the ‘addition gadget’ of (28) is associative. For this we need a
couple of lemmas.

The next lemma, while looking deceptively simple, has a quite involved proof, requiring repeated
use of Lemma 4.13. It was found by translating both sides to normal form, and then simplifying
the intermediate steps.

Accepted in Compositionality on 2022-11-07. Click on the title to verify. 38



Volume 5 Issue 5 ISSN 2631-4444

Lemma 5.1.

=

Proof.

=
4.6 0

0
¬

¬

=

(id)

0 0
¬¬

=
(I0)(zs)

0 0
¬ ¬

0 0

¬¬ ¬ ¬

=

(I0)

=
4.13

0 0
¬ ¬

0 0

¬¬ ¬ ¬

=
4.13

0 0
¬ ¬

0 0

¬¬ ¬ ¬

=
4.13

0 0
¬ ¬

0 0

¬¬ ¬ ¬

(id)
(zs)
=

2.25

0 0
¬ ¬

0 0
¬¬

¬

2.19

=
(16)

¬ ¬
0 0¬

¬

=
3.5

¬
0 0¬

¬

==

2.18

¬
0 0

¬
(zs)
(id)

¬
0 0

¬

(M0,-1)
=

¬

¬
(16)
(zs)

=

¬
3.5
(zs)

=

¬2.27
(zs)

¬ ¬ =

¬
2.22

¬

=
3.5

¬

=

(id)
(id) 2.27

(zs)

=
2.4
(X)

■

Lemma 5.2.

0
¬ =

Lemma 5.3.

0
= 0 0

¬ ¬

Lemma 5.4.

0 =
0

¬
0

0

Proof of Lemma 5.2.

0
¬ =

2.18
=
5.1
(zs)

=
(M-1,-1) 1

=

(16)

=
2.3(17)

■
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Proof of Lemma 5.3.

0 = 0 0
¬ ¬

(16)
=

(ba2)

=
(I-1)(id) ¬

=
(I-1) ¬

¬
=

(M-1,-1)

¬
¬

(zs)
(id)

=

¬
¬(o)

=
(16)

■

Proof of Lemma 5.4.

0=

0
¬

0

0

(I0)
0

0
0
¬

=
(I0) 0

0
0
¬

0¬ =
(M0,0)

0
0
¬

0¬ =
(I0)

0

0¬ =

■

Lemma 5.5. Adding 1 is the same as applying the successor.

=

1

0 0

¬

Proof.

=

1

0 0

(zs)
(id)

0 0
¬

¬
=
5.3

0 0
¬

¬=
(zs) 5.1

=
5.2 0

¬

=

(zs)
(id)

0
¬

■

Lemma 5.6. Addition is associative.

=
0

0

0

0

Proof. We can reduce the LHS to a diagram that is symmetric in the three inputs:

=
0

0

0

0(ba1)
=

0

0(zs)
=

0

5.3
0 0

¬ ¬ =
0

5.4 0 0
=

0 0

0
(zs)

By symmetry we can also bring the RHS to this last diagram, and hence the LHS and RHS are
equal. ■

Lemma 5.7. Let a, b ∈ N. Then the following holds:
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=

a b

0
a+ b

Proof. We prove this by induction on b. For any a, the case b = 0 is straightforward:

=

a 0

0
a

=

a

=

a

=

a

=

a

(16)
(11)

(ba1) 2.26
2.10

2.11
(zs)

2.3
(id)

Furthermore, for any a, Lemma 5.5 shows the case b = 1.
Now, suppose there is some b such that the desired result holds for any a, and consider b+ 1.

Then

=

a b+ 1

0
a

0

1 b

0

0=

a 1

0
b a+ 1 b

0= =

a+ 1 + ba

0

b 1

0

=
5.5 5.6 5.5(*) (**)

where the step marked (*) is by ‘only topology matters’, and the step marked (**) is the inductive
hypothesis. Thus, the result follows by commutativity of addition. ■

5.2 Proving addition for all integers
To generalise addition to arbitrary integers, we need two more lemmas.

Lemma 5.8.

=0
¬

¬

0
¬

Proof.

(16)
¬

2.19 ¬

= =
2.17

¬

(zs) ¬

=
(hs)

¬

0
¬

= ¬

¬

=

¬

(ba2)
¬

= ¬
2.23

(16)
(X)
2.5 0

¬

■

Lemma 5.9. The successor has an inverse.
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=

¬

¬
0
¬

0
¬

Proof.

=

(5.8)
(zs)

=

(16)
2.19

¬

¬ ¬

¬ =

(o)
2.17 ¬

¬(zs)

¬

¬¬

¬
0
¬

0
¬

0

¬

0

¬

=

¬

¬

¬

¬

¬

=
(ba2)(zs)

¬

¬

¬

¬

¬

=

2.13 ¬

¬

¬

¬

2.18
=

2.19
¬

¬

¬

2.17
¬

¬

(zs)
2.27

=

2.29

¬

¬

2.14
2.18
(zs)

=
(ba2)

¬

¬

=

2.19
¬

¬

¬
2.15
2.10

=

(zs)

¬

¬

¬

2.30

=

¬

¬

¬
2.17

=

2.28

¬

¬

¬
=

2.17 ¬

¬

¬

¬

(zs)

=

2.29

¬

¬
2.12

=

2.6
2.14

¬
2.102.3

■

This lemma actually only shows that the successor operation has a one-sided inverse. But
by conjugating the top and bottom using a negate spider, we see that this is in fact a two-sided
inverse.

Proposition 5.10. Let a, b ∈ Z. Then the following holds:

=

a b

0
a+ b
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Proof. If a, b ≥ 0 this is just Lemma 5.7. If both a, b ≤ 0 we simply do:

=

a b

0

−a −b

0
¬ ¬

(13)
=
−a −b

0
2.20

¬(zs)

=
(−a) + (−b)

5.7 ¬

=
a+ b

(13)

Now suppose a > 0 and b ≤ 0, i.e. −b ≥ 0. We prove by induction on −b ∈ N. If −b = 0 this is
trivial. Suppose it holds for −b. In the calculation below we denote the induction step by (*):

=

a −(b+ 1)
0

5.7

a− 1

−(b+ 1)
0

0

1

=
5.6

a− 1

−(b+ 1)

0

0

1

=
a− 1

b

0
(10)

¬

=
5.9

a− 1
b

0

2.14

¬

=
a− 1 −b

0
(13)

=
(a− 1) + (−b)

(*)

a+ (−(b+ 1))
=

0
¬

0
¬

a− 1

b+ 1

0

¬
0
¬

=
(13)
(10)

■

5.3 Proving multiplication
In this section we will show that the multiply rule introduced in Section 3.1 holds for all integers:

a b

=
ab

(29)

It is in any case clear that this operation is commutative, associative and the unit is the
1-labelled H-box. To prove that this indeed acts as multiplication it then suffices to prove it
distributes over addition, which requires a bit of set-up to prove.

Lemma 5.11.

=
0

0
¬

0
¬

0

0
¬

0
¬

0

Lemma 5.12.

=0 0
2

0

¬ ¬

Lemma 5.13.

=
0

0
¬

0

0
¬

0
¬

Proof of Lemma 5.11. Starting from the RHS, we apply (I0) to the bottom H(0)-box. The newly-
introduced H(0)-boxes can then be removed using Lemma 4.23: first with the top binary H(0)-box,
then with the one on the right, and finally with the one on the left.
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0

0
¬

0
¬

0

=0

0 0
0

0

0 0

0

0
0

0

= =
0

0 00
0

0

=
0

0 00
= 0

0 0

(I0) 4.23 4.23 4.23

After replacing the red dashed lines with NOT gates and applying (id), this is equal to the LHS.
■

Proof of Lemma 5.12. First:

=00 0
5.3

0
0

¬

¬
= 0

00
Note that – up to one bent wire and the introduction of trivial H(1)-boxes – the resulting dia-
gram consists of an H(0)-box on the left output, applied to a normal form diagram. The H-box
parameters in the normal-form diagram are

abc⃗ =
{

0 if b = 0, c⃗ = 11 or b = 1, c⃗ = 10
1 otherwise.

By Lemma 3.7, we have both I0 and I1, and by Lemma 3.12, we have Ax,y for any x, y ∈ {0, 1}.
Thus we may apply Lemma 4.24 (where we have left out the bent wire for simplicity):

0

00

=
4.24

=

2 2 0

=

2 0

(I2)
bc⃗

c⃗ ∈ B2

a0c⃗ + (1− b)a1c⃗

b ∈ B

(*)
2.19

For the step denoted (*), note that(
1 1
1 0

) (
1 1 1 0
1 1 0 1

)
=

(
2 2 1 1
1 1 1 0

)
so

a0c⃗ + (1− b)a1c⃗ =


2 if b = 0 and c⃗ ∈ {00, 01}
0 if b = 1, c⃗ = 11
1 otherwise,

and that H(1)-boxes can be left out of the diagram by (17) and Lemma 2.25. Hence, re-introducing
the bent wire, we find:

2 0

= 2
0

= 2

0

¬ ¬
(id)

■
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Proof of Lemma 5.13.

=0

0
¬

0

0

¬

2.10
= ¬
5.3

0 0
¬ ¬

0
=

2.19

0 0
¬ ¬

0
(zs)

=

0
¬ ¬

0

4.23
(id)

=

0
¬ ¬

0(M0,2)
2 =

0

¬ ¬

0
(zs)

2

2.19
¬ ¬ =

5.12
0

0
¬

0
¬ ■

Lemma 5.14. For any natural number n:

=0

n

0

n n

Proof. For n = 0 this is straightforward. We prove by induction, so assume it holds for some n.
In the calculation below we denote the induction step by (*).

=0

n+ 1

0

n
0
¬

0

n

0
¬

=

0
¬

0

n

0
¬

=

0
¬

0

0

n

0
¬

=

0
¬

0

(*)

n

0

n

0
¬

=

0
¬

n

0

n+ 1

=

n+ 1

(10) 5.13 5.11 5.11 (10)

■

Lemma 5.15. The multiplication gadget distributes over addition, i.e. for any natural numbers
n ∈ N:

=
0

n

0
n n

Proof.

=
0

n

0
n n

0

n(ba1)
(zs)

=
0

n
5.14

n =
(zs)

■

Proposition 5.16. The multiply rule holds for any integers a and b:

a b

=
ab
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Proof. By Lemma 3.1 it suffices to show the non–!-boxed version, i.e. (Ma,b).
First we prove (Ma,b) for a, b ∈ N. The proof is by induction on b for any a ∈ N. The base

cases of b = 0 and b = 1 have already been shown in Lemma 3.2.
For the induction step, assume there exists some b such that (Ma,b) holds for any a. Then:

a b+ 1

=
5.5

0

a

b 1

=
0

a a
b 1

=
0

ab a

=
ab+ a

5.15 (*) 5.7

where the step labelled (*) uses the base case b = 1 and the inductive hypothesis.
Now for negative numbers, we have:

−a

=
(13)

a
¬

=
(Z)

a

=
(zs)

a

=
(Z)

a

¬

and similarly for b, so the multiplication reduces to that of non-negative numbers. If there are two
copies of ¬ , they cancel by Lemma 2.14. ■

6 Completeness
We write ZH ⊢ D1 = D2 when D1 and D2 can be proven to be equal using the rules of the
ZH-calculus. The ZH-calculus is complete when JD1K = JD2K implies that ZH ⊢ D1 = D2.

In Proposition 4.21, a ‘conditional’ completeness result was proven, that shows that if the ZH-
calculus can prove the average, intro and multiply rule for all integers, then the ZH-calculus is
complete. Proposition 5.16 shows that the multiply rule holds for all integers, so that it remains
to prove the intro and average rule. That is what we will do in this section.

First, we will establish the average rule.

Lemma 6.1. The ternary X-spider can be brought to normal form.

Proof.

=
(X)

=
(id)

=

(I-1)
(M-1,-1)

=
4.13

=
(16)

00 0 0

(17)

where there are three applications of Lemma 4.13 in the second-to-last step to break up the white
spider. This last diagram is in normal form if we introduce the necessary trivial H(1) boxes. ■

Proposition 6.2. The ZH-calculus proves (Aa,b) for all integers a and b.

Proof. It suffices to show that:

=¬ 0 2

¬

(30)

As then
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= 0
2

¬

a b = ¬

a b

(14)

a b

=

¬

2a+ b

¬

5.10
(30)
2.3

as required. We show this by bringing both sides of Eq. (30) to normal form.
For the RHS of (30), first recall that we can bring the X-spider to normal form using Lemma 6.1,

and hence:

0
2

= 0 00 0

0

2
= 000 0 02

6.1 4.23
(I0)
(I2)

For the LHS of (30), bending the wires up for simplicity, we first have

=
¬

=
(id) (I-1)

=
4.13

=
(16)

0 0
=

(I-1)

0 0

Ignoring the white dot, this is a normal form diagram with a011 = a110 = 0, a111 = −1 and a⃗b = 1
otherwise. Lemma 3.12 proves (Aa,b) for all combinations of those values, thus we can apply the
second part of Lemma 4.22 to show

0 0

=

0 02 2
Up to a partial transpose (for easier legibility of the matrices), this corresponds to(

1 1
1 −1

) (
1 1 1 0
1 1 0 −1

)
=

(
1 + 1 1 + 1 1 + 0 0− 1
1− 1 1− 1 1 + 0 0 + 1

)
=

(
2 2 1 −1
0 0 1 1

)
.

Again, this is a normal form diagram, this time with a000 = a001 = 2, a011 = −1, a100 = a101 = 0
and a010 = a110 = a111 = 1. Now we apply the first part of Lemma 4.22 (note the changes due to
the H-box being on the third output):

0 02 2

= c⃗b

ac⃗0

c⃗ ∈ B2

c⃗b

(−1)bac⃗1
¬

b ∈ B

We have ac⃗0 = ±ac⃗1 for all c⃗ ∈ B2, so the two H-boxes in each copy of the !-box contain either
equal or opposite integers. By Lemma 3.7 we have (Ia) for all a ∈ {−1, 0, 1, 2}, so we can use
Lemma 3.10. Thus,
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c⃗b

ac⃗0

c⃗ ∈ B2

c⃗b

(−1)bac⃗1
¬

b ∈ B
c⃗ ∈ B2

c⃗b

1
2 (ac⃗0 + (−1)bac⃗1)

b ∈ B

= =

0 0 02 00

Up to a partial transpose, this sequence of rewriting steps corresponds to
2 2
1 −1
0 0
1 1

 (
1 1
1 −1

)
=


2 + 2 2− 2
1− 1 1 + 1

0 0
1 + 1 1− 1

 = 2


2 0
0 1
0 0
1 0


Combining everything and bending back the legs, we find

= 0 002 00¬

This is the same as the RHS. ■

It now remains to prove (Ia) for all integers a. We can reduce this problem to proving it for
natural numbers using the following lemma.

Lemma 6.3. Suppose we have proven (Ia) and (Ib) for some integers a and b. Then we can also
prove (Ia·b). In particular, if we have (Ia), then we also get (I−a).

Proof. We bend all the wires up for a more easy presentation. The proof is then straightforward:

=¬

a · b a · b
¬

(14)

a b a b

= ¬
2.15

a b a b

= ¬
(ba2)

a b a b

=
¬

2.19

a b a b

(zs)

¬
(14)

=

(Ia)

a b

(Ib)
= a · b

(Ma,b)

(Ma,b)

Because we have (I−1) (Lemma 3.7), we get (I−a) if we have (Ia). ■

Proposition 6.4. The ZH-calculus proves (Ia) for all integers a.

Proof. By the previous lemma it suffices to prove (In) for all natural numbers. Note that we have
(I0) and (I1) so that by induction it suffices to show that we can get (In+1) out of (In). We will
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show that:

¬ =

0

¬

¬

0
¬

0
¬

(31)

This is sufficient because then:

= ¬¬

n+ 1 n+ 1
= ¬

n n

(14)
(10)

n n

= ¬

n n
=

n

(In)

n+ 1
=

(10)(31) (14)

0
¬

0
¬

0
¬

0
¬

0
¬

We prove Eq. (31) by reducing both sides of the equation to normal form, beginning with the
part that is the same on both sides. To start, we bring the top part of the diagram into normal
form and then apply the first part of Lemma 4.22 to the H-box on the bottom left wire.

¬ = =

c⃗

ac⃗0d

c⃗ ∈ B2

c⃗

(−1)bac⃗1d¬

b, d ∈ B

bd bd

. . .

15

=

c⃗

c⃗ ∈ B2

1
2 (ac⃗0d + (−1)bac⃗1d)

b, d ∈ B

bd

(I-1) 4.22 3.11
3.10

For the final step, note that the coefficients ac⃗bd of the normal-form diagram are ±1, indeed
a0101 = a0111 = a1101 = a1111 = −1 and ac⃗bd = 1 otherwise. We have (I1) and (I−1) by Lemma 3.7.
Thus we can use the first equalities from Lemmas 3.10 and 3.11. This transformation corresponds
to

1 1 1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 =


1 + 1 1 + 1 1− 1 1− 1
1− 1 1− 1 1 + 1 1 + 1
1 + 1 1 + 1 1− 1 1− 1
1 + 1 −1− 1 1− 1 −1 + 1

 = 2


1 1 0 0
0 0 1 1
1 1 0 0
1 −1 0 0


Let zc⃗bd := 1

2
(
ac⃗0d + (−1)bac⃗1d

)
, then

zc⃗bd =


−1 if c⃗bd = 1101
0 if (c⃗ ∈ {00, 10, 11} ∧ b = 1) ∨ (c⃗ = 01 ∧ b = 0)
1 otherwise.

For each c⃗ and b, we have zc⃗b0 = ±zc⃗b1, and by Lemma 3.7 we have (I0), (I1) and (I−1). Hence
we can again apply the first part of Lemma 4.22, followed by the first equalities of Lemmas 3.10
and 3.11.
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=

c⃗

zc⃗b0

c⃗ ∈ B2

c⃗

(−1)dzc⃗b1¬

b, d ∈ B

bd bd

c⃗

c⃗ ∈ B2

zc⃗bd

b, d ∈ B

bd

=

c⃗

c⃗ ∈ B2

1
2 (zc⃗b0 + (−1)dzc⃗b1)

b, d ∈ B

bd

. . .

14

=
4.22 3.11

3.10

This step corresponds to:

2


1 1 0 0
0 0 1 1
1 1 0 0
1 −1 0 0




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 = 2


1 + 1 1− 1 0 + 0 0 + 0
0 + 0 0 + 0 1 + 1 1− 1
1 + 1 1− 1 0 + 0 0 + 0
1− 1 1 + 1 0 + 0 0 + 0

 = 4


1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0


Combining everything, we have

¬ =

c⃗

c⃗ ∈ B2

wc⃗bd

b, d ∈ B

bd

(32)

where

wc⃗bd := 1
2

(
zc⃗b0 + (−1)dzc⃗b1

)
=

{
1 if c⃗bd ∈ {0000, 0110, 1000, 1101}
0 otherwise.

Now, for the left-hand side of Eq. (31), let yc⃗bd := wc⃗(1−b)(1−d), so that

yc⃗bd =
{

1 if c⃗bd ∈ {0011, 0101, 1011, 1110}
0 otherwise.

Note that yc⃗0dyc⃗1d = 0 for all c⃗, d, so we will be able to apply Lemma 4.24 because we have already
proved (Ayc⃗0d,yc⃗1d

) for all c⃗, d. By absorbing the two NOTs on the bottom wires and relabelling,
we find:

c⃗

c⃗ ∈ B2

wc⃗bd

b, d ∈ B

bd

0 0

c⃗

c⃗ ∈ B2

yc⃗bd

b, d ∈ B

bd

0 0

= =

c⃗

c⃗ ∈ B2

yc⃗0d + (1− b)yc⃗1d

b, d ∈ B

bd

0¬ ¬

¬ =
(32) 4.24

0 0
¬ ¬

This corresponds to

4


0 0 0 1
0 1 0 0
0 0 0 1
0 0 1 0




1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 = 4


0 1 0 0
0 1 0 1
0 1 0 0
1 0 0 0
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Finally, let xc⃗bd := yc⃗0d + (1− b)yc⃗1d, then

xc⃗bd =
{

1 if c⃗bd ∈ {0001, 0101, 0111, 1001, 1100}
0 otherwise.

Note that xc⃗b0xc⃗b1 = 0 for all c⃗b, so we use the same process for the final 0-labelled H-box.

=

c⃗

c⃗ ∈ B2

xc⃗bd

b, d ∈ B

bd

0

=

c⃗

c⃗ ∈ B2

xc⃗b0 + (1− d)xc⃗b1

b, d ∈ B

bd

4.24

This rewrite step corresponds to:

4


0 1 0 0
0 1 0 1
0 1 0 0
1 0 0 0




1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

 = 4


1 0 0 0
1 0 1 0
1 0 0 0
1 1 0 0


Apart from the two white dots, the left-hand side diagram of Eq. (31) has now been brought into
normal form.

For the right-hand side of Eq. (31), note that wb0c⃗wb1c⃗ = 0 for all b, c⃗, so we can again use
Lemma 4.24, before absorbing the NOT and relabelling:

bd

c⃗ ∈ B2

wbdc⃗

b, d ∈ B

c⃗

0
¬

¬
= = bd

c⃗ ∈ B2

wb0c⃗ + (1− d)wb1c⃗

b, d ∈ B

c⃗

¬

= bd

c⃗ ∈ B2

wb0c⃗ + dwb1c⃗

b, d ∈ B

c⃗

(32) 4.240
¬

This corresponds to

4


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0




1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0

 = 4


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1 0 1 0
1 0 0 0
1 1 0 0
1 0 0 0



= 4


1 0 0 0
1 0 1 0
1 0 0 0
1 1 0 0


which is equal to the LHS, so (31) is proved. ■

Theorem 6.5. The ZH-calculus is complete.

Proof. Propositions 5.16, 6.2 and 6.4 show that (Ma,b), (Aa,b) and (Ia) are provable in the ZH-
calculus for all integers a and b. Hence Proposition 4.21 shows that the ZH-calculus is complete. ■
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7 The ZH-calculus over arbitrary rings
The ZH-calculus as defined above represents matrices over Z[ 1

2 ]. To handle these efficiently, we
introduced integer labels on H-boxes. In this section, we extend this idea: we allow H-boxes to be
labelled a priori by elements of some ring R. As a result, diagrams can express matrices in R-bit,
the full subcategory of R-modules where the objects are of the form (R ⊕ R)⊗n. This means our
diagrams are interpreted as matrices of shape 2n× 2m with entries in R. The conditions on R and
the ways in which we show completeness will be the core of this section. We will dub this new
calculus ZHR, or ‘ZH over R’, with the original phase-free calculus simply called ‘ZH’ without a
subscript. The ruleset of ZHR will be a strict superset of the rules of Figure 1, and hence anything
we have already proven for ZH will remain true in ZHR.

The original ZH-calculus as introduced in [5] represented matrices over the complex numbers,
and hence in our notation is called ZHC. The utility of ZHC is that it can describe evolutions
of qubits. This does not need to be the only useful choice of ring: The ZW-calculus is similarly
parametrised by a commutative ring [27], and this flexibility is what allowed for the proof of
completeness for Clifford+T ZX via ZWZ[ 1

2 ] [29]5.
We will show that we can make ZHR sound, complete, and universal into R-bit provided that R

is commutative with 1 ̸= 0, and the element 2 is not a zero-divisor. Unitarity of the ring is required
so that we can preserve the interpretation of the generator, which uses 0 and 1. Commutativity
of R is required because we require the following isometry of diagrams to be sound:

a b ≃ b a =⇒ J a b K = J b a K =⇒ a× b = b× a

The condition on the element 2 is needed since otherwise we would no longer have a well-
defined relationship allowing us to go between white spiders and grey spiders as in (NOT) and
(X). Likewise we would no longer be able to freely introduce pairs of Hadamard gates via the (hh)
rule. These relationships are so important that we exclude the case where 2 is a zero-divisor from
this paper and leave it to future work.

We will first deal with the case where 1
2 ∈ R in Section 7.1, and afterwards we will adapt the

results to work when 1
2 ̸∈ R in Section 7.2. When 1

2 ∈ R we will show that is equal to the H( 1
2 )

box with no inputs or outputs, and hence the generator is superfluous.
The completeness result for when 1

2 ∈ R uses the rules given in Figure 3, which are a superset
of the rules given in Figure 1. If the ring R does not contain 1

2 but does contain 2, which is not a
zero-divisor, then the ring R[ 1

2 ] is well defined. We can then use the completeness of ZHR[ 1
2 ] and

the introduction of a meta-rule to eliminate all instances of the generator to give completeness
of ZHR for 1

2 /∈ R.
Note that the ZH-calculus as introduced in Section 2 is not the same as ZHR for any R, since

in the ZH-calculus the labels are from Z but the interpretation is into Z[ 1
2 ]-bit.

7.1 ZH-calculus over rings with a half
In this section we will take R to be a commutative unital ring that contains 1

2 (and so 2 is not a
zero-divisor). We generalise the labelled H-boxes of Section 2.5 by letting the H-boxes in ZHR be
labelled by any element r ∈ R:

u

www
v

. . .
r
. . .

n

m

}

���
~

:=
∑

ri1...imj1...jn |j1 . . . jn⟩ ⟨i1 . . . im|

As in Section 2.1, the sum in the second equation is over all i1, . . . , im, j1, . . . , jn ∈ {0, 1} so that
the H-box above represents a matrix with all entries equal to 1, except the bottom right element,
which is r. If the label is −1 (so that it matches the usual H-box of Section 2.1) we will usually

5Due to these ideas emerging concurrently the authors of [29] do not explicitly use ZWZ[ 1
2 ] but something very

similar.
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leave out the label. Besides these more general H-boxes, the other generators are identical to those
found in Section 2.1. Note that because 1

2 ∈ R, the star generator is redundant:

J K = 1
2 =

r
1
2

z

We will derive the corresponding diagrammatic equality later in Lemma 7.9. We could therefore
use just the following generators when 1

2 ∈ R:

. . .

. . .
,

. . .
r
. . .

But in order to retain compatibility with the previous results, we will continue to write to
represent the scalar 1

2 .
As before, we define the grey spiders and NOT gate of (1) as derived generators. With these

generators and derived generators established we can state our theorem of universality.

Theorem 7.1. The calculus ZHR is universal over R-bit, shown using the unique normal form
diagram: u

v
∏

b⃗∈Bn

(
ι⃗b ◦Hn(a⃗b)

)}~ =
∑

b⃗∈Bn

a⃗b

∣∣∣⃗b〉 . (33)

Proof. The equation above was demonstrated in the proof of Theorem 4.4. The lack of stars in
this version comes from noting that every element in R is divisible by 2 (as 1

2 ∈ R) and so stars
are always subsumed into the ring elements a⃗b in the reduced normal form. ■

Now let us establish our ruleset for the ZH-calculus over R. The rules for ZHR are given
in Figure 3 along with the same ‘only topology matters’ meta rule and all the same symmetry
conditions as before:

=
...

... ...

...

...

...

...

...
= =

...

...
=

...

...
a==

...
a

...
a

... ...

...

...

...

...

...
= aa

...... ...
=

Here, a ∈ R is arbitrary.
In comparison to the rules of Figure 1, (HS) has been generalised from (hs) to allow arbitrary

labelled H-boxes and (U) has been added to relate the white dot to an H-box labelled by the 1
element of the ring. The rules (M), (A) and (I) already appeared in Section 3 as (Ma,b), (Ia) and
(Aa,b), but there they were derived rules that applied to integer labelled H-boxes, while here they
are axioms that relate the ring elements of R. Note that it is not immediately obvious that the
Z-labelled H-boxes of Section 2.5 correspond to the R-labelled H-boxes of the ZHR-calculus. We
will prove this imminently, though first we observe the soundness of ZHR.

Proposition 7.2. The rules of Figure 3 are sound.

Proof. Because of Proposition 2.2, we simply need to check that the rules not already present in ZH
are sound; these are (HS), (M), (A), (I), and (U). This is done by straightforward calculation. ■

To show how the labelled H-boxes of ZH and ZHR relate, we first show that H(1) indeed
satisfies (17):

Lemma 7.3. The phase-1 H-box of any arity decomposes:

1
=

Proof.

1
=

1

= = =
(HS) (U) (1) (ba2)2.3

=
1

■
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(zs)
. . .

. . .

m

n

. . .

n

m

. . .

= (id) =

(HS)
. . .

a

. . .

m

n

. . .

n

m

. . .

a
= (hh) =

(ba1)
. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . . (ba2)
. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . .

(M)

a b

=
ab

(o) =¬ ¬

(A) a b
=

a+ b
¬

2
¬ (I)

a a=
¬

a

(U)
1

=

Figure 3: The set of rules for the ZHR-calculus. Throughout, m,n are nonnegative integers and a, b are arbitrary
elements of the commutative unital ring R that contains a half. The lowercased rules are the same as those in
Figure 1. The rules (M), (A), (U), and (I) are pronounced multiply, average, unit, and intro respectively.

Lemma 7.4.

2 2 =
¬

Proof.

2 2 =
¬

1 + 1 2
¬

1 1
¬

=
(A)

¬

=
7.3

=

(zs)
2.25

=
(zs)

■

Now we can also establish that H(0) and H(2) are as in Section 2.5.
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Lemma 7.5.

0
=

Lemma 7.6.

2
= ¬

Lemma 7.7.

2 =

Proof of Lemma 7.5.

0 = 0

2.3
(id)

= 0

7.4

2 2
¬

(zs)
=

0

(zs)

2 2
¬ =

1− 1

(M)

2
¬ =

(A)

1 -1
¬

=

7.3

¬

(zs)
=

2.25
(id)
(1)

■

Proof of Lemma 7.6.

=
¬

¬

(id)

7.4
2.3

2 2
¬ =

¬
(I)

2

2¬

2
¬

= 0

¬
(16)

2

2¬

2
¬

= 0

¬(M)
2¬

2
¬

(id)

=

¬
(A) 2¬

2 2
¬ =

¬
2¬7.4

=

2

2.3
(id)
2.12

■

Proof of Lemma 7.7. Identical to the proof of Lemma 2.35. ■

With these equivalences established, we will now use induction to show that the labelled H-
boxes in ZH are equivalent (using the rules of ZHR) to the corresponding H-boxes in ZHR.
Proposition 7.8. All the integer labelled H-boxes of the ZH-calculus (Section 2.5) are provably
equal in ZHR to the corresponding labelled H-box in the ZHR-calculus.
Proof. We will denote a labelled ZH H-box of Section 2.5 by H(n′) to distinguish it from a generator
of the ZHR-calculus. We have for every n ∈ {1, 2, 3, . . . } ⊂ R:

=n+ 1
n+ 1

(id)

7.4
2.3

2

2
¬ =

(A)

n 1

2

¬

=
n′ 1

2

¬

(*)

(n+ 1)′ 2

2
¬=

(6.2)
=

7.4
2.3
(id)

(n+ 1)′

Here the induction step is denoted by (*). Note that we first used the average rule as an axiom
of ZHR acting on the generators (written (A)), and then as a derived rule from the original ZH-
calculus (Proposition 6.2). For negative integers we simply note that the definition of negation
(13) corresponds precisely to multiplying by −1 in (M). ■

As in Section 3, we can prove !-boxed versions of the axioms (M), (A) and (I). In particular,
the !-boxed version of (M) and (U) (i.e. Lemma 7.3) where the !-box is expanded 0 times give:

ba ab= =1 (34)

These rules enable us to multiply scalars at will, and in particular eliminate scalars by multiplying
by the inverse (when the inverse exists in R). Finally we will prove that the star generator is equal
to the scalar 1

2 in ZHR.
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Lemma 7.9. If 1
2 ∈ R, then = 1

2 .

Proof.

1
2

2.3
= 1

2

7.7
= 2 1

2

(34)
= 1

(34)
= ■

With the correspondence to the standard ZH-calculus now firmly established, we can easily
adapt our previous results to prove that ZHR is complete.

Theorem 7.10. Let R be a commutative unital ring with 1
2 ∈ R. Then the ZHR-calculus is

complete, i.e. for any ZHR-diagrams D1 and D2, if JD1K = JD2K, then D1 can be transformed into
D2 using the rules of Figure 3.

Proof. As the rules of Figure 3 are a superset of those of Figure 1, anything we have proven for ZH
remains provable in ZHR. We have also shown in Proposition 7.8 that all the labelled (ZH) H-boxes
used in the completeness proof are equivalent to their ZHR-calculus counterparts. In particular,
the reduction to normal form conditional on having proved (Ma,b), (Ia) and (Aa,b) of Section 4.2
remains valid. But now, instead of having to prove the multiplication, introduction and average
rules, we have them assumed as axioms. Thus, we can transform any ZHR-diagram into reduced
normal form, and hence the calculus is complete.

■

7.2 The ZH-calculus over rings without a half
The ZHR-calculus when R does not contain a half is slightly trickier to deal with. As before, we
will assume that R is a commutative unital ring. But instead of assuming that 1

2 ∈ R, we will
merely assume that 2 is not a zero-divisor.

With these conditions, R embeds faithfully into R[ 1
2 ], and so ZHR as defined in Section 7.1

has a non-universal interpretation into R[ 1
2 ]-bit. We could then add the generator creating a

universal interpretation into R[ 1
2 ]-bit. This is essentially the process one follows to go from ZHZ

to our ‘phase-free’ ZH, but also raises the question of ‘why not just start with ZHR[ 1
2 ] instead?’

We present in this subsection a definition of ZHR, with 1
2 /∈ R, that is universal for R-bit and is

complete using the same rules as ZHR when 1
2 ∈ R, with the exception of an additional ‘scalar

cancellation’ meta-rule.
Since we want to have an interpretation into R-bit we will no longer be able to use the

generator, which in turn makes the definition of the derived generators (X) and (NOT) invalid.
Instead we will promote the grey spiders from being derived generators to, simply, generators.
Hence, our list of generators becomes:

. . .

. . .
,

. . .
r
. . .

,

. . .

. . .
,

. . .
¬
. . .

The ruleset of the ZHR-calculus when 1
2 ̸∈ R consists of the rules of Figure 3, where now the

grey spiders are considered to be actual generators, and the usual symmetries of the generators.
In addition, as the grey spiders are now no longer defined in terms of the other generators, we
introduce the following rules to relate the generators to one another, which are scaled versions of
the definitions of the grey spiders (1):

=
. . .

. . .

. . .

. . .
(2X)

¬ =
· · ·

· · ·

· · ·

· · ·
(2NOT)

Finally, we will also need the following cancellation meta-rule to get completeness when 1
2 /∈ R:

D1 = D2 =⇒ D1 = D2 (2Cancel)
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In words, this rule says that if two diagrams are provably equal in ZHR and they both contain a
scalar white dot, then we can cancel the white dot on both sides and retain an equality. (When
is in the calculus, this follows easily by an application of Lemma 2.3.) We call this implication a
meta-rule because it is a statement about admissible deductive logic rather than diagram equality.
Note that since 2 is not a zero-divisor in R this rule is sound. A similar meta-rule was also used
for proving completeness of rational-angle fragments of the ZX calculus [30].

The plan for showing completeness of ZHR when 1
2 /∈ R is to show that the ZHR[ 1

2 ]-derivation
from a ZHR-diagram D to its normal form can be used as a ZHR-derivation, up to rescaling. While
this idea is straightforward, formalising it takes some care.

Remark 7.11. Every ZHR diagram can be seen as a ZHR[ 1
2 ] diagram by translating each diagram

component to their obvious counterpart. For grey spiders we need to be careful about this trans-
lation, since they are generators in ZHR, but derived generators in ZHR[ 1

2 ]. We will be using this
embedding in the lemmas that follow, noting that we will still explicitly ‘unpack’ grey spiders using
the rules (NOT), (X), (2NOT) and (2X) when we need to (and not leave such unpacking implicit).
We are treating the element as syntactic sugar to represent the 0-arity H( 1

2 ) box when it arises.

Lemma 7.12. Suppose D1 and D2 are ZHR-diagrams. Let ∗ denote either of the ZHR[ 1
2 ]-rules

(NOT) or (X), with 2∗ denoting the corresponding rescaled ZHR version (2NOT) or (2X). Then if
the ZHR[ 1

2 ] rule application

D1

*
= D2

is a valid diagrammatic rewrite, so is the ZHR rule application

D1

2∗
= D2

Proof. This follows immediately from the definitions. ■

Definition 7.13. We say that a ZHR[ 1
2 ] diagram is a ZHR diagram (pronounced ‘ZHR with stars’

diagram) if it is of the form D ⊗ ( )⊗n, where D is a ZHR diagram.

Recall that the rules of ZHR[ 1
2 ] are the rules given in Figure 3 and the rules relating the

generators to derived generators: (X), (NOT), and (Z).

Lemma 7.14. The only ZHR[ 1
2 ] rules that can be applied to a ZHR diagram to give a diagram

that is no longer a ZHR diagram are (M), (A), and (HS).

Proof. The (M) and (A) rules (applied right-to-left) can both result in H-box phases that are no
longer in R. Furthermore, recall from Remark 7.11 that the star element is used here as short-
hand for the 0-arity H-box labelled by 1

2 . Hence 1
2 -labelled H-boxes of arity 0 are allowed in ZHR

diagrams, while 1
2 -labelled H-boxes of higher arity are not allowed. Yet the (HS) rule, when applied

right-to-left to a 1
2 -labelled H-box of arity 0, yields a 1

2 -labelled H-box with arity greater than 0.
All other rules preserve ZHR diagrams: the only remaining rules that affect H-box labels are

(U), which can only introduce the integer label 1, and (I), which does not change any labels and
does not match H-boxes of arity 0. The other rules do not involve H-box labels at all. ■

Lemma 7.15. The ZHR[ 1
2 ] derivation from a ZHR diagramD to its normal formN of Theorem 7.10

is a ZHR diagram at every step of the derivation.

Proof. The starting diagram D is a ZHR diagram (and therefore also a ZHR diagram). Each step
of the derivation to its normal form N is a rule application, and we will show that every rule
application used preserves the condition of being a ZHR diagram. Intuitively, this is because the
process for rewriting to normal form was derived in the phase-free ZH-calculus, which differs from
ZHZ only in that grey spiders are syntactic sugar rather than generators.

More formally: by Lemma 7.14 the only rule applications that could result in a diagram that
is no longer in ZHR form are (M), (A), and (HS). As can be verified by going through the steps
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of the derivation in Section 4, the derivation from D to N only uses (M) and (A) with phases that
are elements of R, and hence they preserve the ZHR form.

Also note that at no point in the derivation is the rule (HS) applied to a star, since in ZH that
would result in an invalid 1

2 -phased H-box. ■

The previous lemma shows that the derivation from a ZHR-diagram D to its normal form in
ZHR[ 1

2 ] consists of diagrams that are close to being ZHR-diagrams, except for the star generators.
We shall next show that the only rules that interact with are (NOT) and (X), which are precisely
the rules we replace when using ZHR instead of ZHR[ 1

2 ].

Lemma 7.16. In the ZHR[ 1
2 ] derivation from a ZHR diagram D to its normal form N of Theo-

rem 7.10, the element is only ever involved in a rewrite when the rule being applied is (NOT)
or (X).

Proof. The only ZHR[ 1
2 ] rules that interact with the element are (NOT), (X), and (HS) (viewing

the star as a 0-arity H-box). As noted in the proof of Lemma 7.15 the (HS) rule is never applied
to a star in the course of the derivation, since the derivation was designed to be applied to ZH
diagrams where such a rewrite would be invalid. ■

Lemma 7.17. If the ZHR diagram D has normal form N , then there is a m ∈ N such that the
equation D ⊗ ( )⊗m = N ⊗ ( )⊗m is derivable in ZHR.

Proof. By Lemma 7.15 there is a ZHR[ 1
2 ]-derivation from D to N such that every diagram in the

chain is a ZHR diagram. As noted in Remark 7.11, we are keeping the unpacking of grey spiders
explicit, and so applications of the ZHR[ 1

2 ]-rules (NOT) and (X) are explicit steps in this derivation.
We then simultaneously compose every diagram in the derivation by the same number of

generators such that by Lemma 7.12 we can replace all applications of (NOT) with (2NOT) and
all applications of (X) with (2X), and then cancel all remaining instances of a with a . This
leaves us with a sound ZHR-derivation of ZHR diagrams from D⊗ ( )⊗m to N ⊗ ( )⊗m for some
m ≥ 0. ■

Theorem 7.18. Let R be a commutative unital ring where 2 is a zero-divisor and 1
2 ̸∈ R. Then

the ZHR-calculus is complete. In other words, for any ZHR-diagrams D1 and D2, if JD1K = JD2K
then D1 can be transformed into D2 using the rules of Figure 3, the rules (2NOT) and (2X), and
the meta-rule (2Cancel).

Proof. The completeness of ZHR[ 1
2 ] gives us the ZHR[ 1

2 ]-derivations D1 = N and N = D2. By
Lemma 7.17 there are ZHR-derivations ( )⊗a ⊗D1 = ( )⊗a ⊗N and ( )⊗b ⊗N = ( )⊗b ⊗D2
for some a, b ∈ N. We can therefore derive ( )⊗a+b⊗D1 = ( )⊗a+b⊗N = ( )⊗a+b⊗D2 in ZHR

by multiplying every diagram in the derivations by a suitable number of ⊗-products of .
By the (2Cancel) meta-rule we can then assert that D1 = D2 is provable in ZHR. ■

We have now shown that ZHR is universal, sound, and complete whenever R is a commutative,
unital ring where 2 is not a zero-divisor. In the case 1

2 ∈ R, the calculus and ruleset is very similar
to our basic ZH. When 1

2 /∈ R we needed to tweak the generators to avoid using the generator,
and we needed to introduce a meta-rule for cancelling generators.

8 Modifications to the ZH-calculus
In this section, we will discuss a couple of variations on the ZH-calculus. In particular, we present
an alternative to (o) in Section 8.1, and an alternative to (A) and (I) in Section 8.3. We show
that (hh) can actually be proved from the other rules in Section 8.2. In Section 8.4 we present
an alternative parameter-free ZH-calculus which is complete over a subring of matrices over Z[ 1√

2 ]
which exactly corresponds to those that can be implemented by the Toffoli+Hadamard gate set.
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8.1 Replacing the (o) rule
Of all the basic rules of the ZH-calculus in Figure 1 the ortho rule (o) seems a bit out of place. In
this section we will see that we can replace it with two other rules, namely Lemmas 2.28 and 5.1.
These two rules can be rephrased as statements about the AND gate. Namely, up to some simple
rewriting, Lemma 2.28 says that if we post-select the AND gate with ⟨1| that this post-selection
copies through:

AND

IS–1

=

¬
IS–1 IS–1

⇐⇒ =
¬ ¬

Lemma 5.1 can be rephrased as stating that a COPY gate followed by an AND gate applied to its
outputs is just the identity:

AND
= ⇐⇒ =

COPY

Lemmas 2.28 and 5.1 show that these two rules can be proved by the basic ZH-calculus rules
including (o). In this section we will show the converse: that assuming just the rules of Figure 1
except for (o), together with the Lemmas 2.28 and 5.1 we can prove (o). Note that all the basic
lemmas of Section 2.4 are proven without the usage of (o) (except for Lemma 2.28), and hence can
be used in this section.

Before proving (o), we need to prove a number of lemmas that are essentially statements in
Boolean logic.

Lemma 8.1. (x⊕ y) ∧ z = (x ∧ z)⊕ (y ∧ z):

=

Lemma 8.2. (¬x) ∧ y = (x ∧ y)⊕ y:

=
¬

Lemma 8.3. (¬x) ∧ x = 0:

=
¬

Lemma 8.4. x ∨ y = x⊕ (x ∧ y)⊕ y:

=
¬ ¬

¬

Proof of Lemma 8.1.

= =
(ba2)

=
(2.15)

■
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Proof of Lemma 8.2.

=
¬

=

¬

=
8.12.13

¬

2.27
(hh)
2.3

■

Proof of Lemma 8.3.

=
¬

2.18
(zs)

=
5.1

=
(X)
2.3

=
2.30

■

Proof of Lemma 8.4.

=
¬ ¬

¬

¬

¬

8.2
= ¬

2.19
2.12

=
8.2

■

Lemma 8.5. We have (x ∧ (¬y)) ∨ (y ∧ z) = (x ∧ (¬y))⊕ (y ∧ z):

=

¬ ¬

¬

¬ ¬

Proof.

=

¬ ¬

¬

¬

¬

8.4

¬

=
2.15

¬

=
(ba2)

¬

=

(hs)

¬

2.3

=

2.19

¬

(zs)

¬

=

8.3
(zs)

¬

=

2.26
(zs)

¬

=

(X)
(zs)

2.3

(id)

(hs)
2.3
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■

Theorem 8.6. In the presence of the other rules of the ZH-calculus, (o) is equivalent to the union
of Lemmas 2.28 and 5.1.

Proof. The proof of Lemmas 2.28 and 5.1 shows the forward direction: that the standard ruleset
of the ZH-calculus, including (o), implies the two lemmas. For the converse direction, recall that
the only one of the basic derived rules in Section 2.4 whose proof required (o) was Lemma 2.28,
which is now one of our axioms. Note that we have proven Lemma 8.5 using just Lemma 5.1, ZH-
calculus axioms other than (o), and the basic derived rules. Proving (o) from Lemma 8.5, other
ZH axioms, and basic derived rules will therefore give the desired result. To make the application
of intermediate rules clearer, we re-arrange the diagrams of (o) so the wire which is usually an
output is now the middle input instead:

¬ ¬

¬

¬¬

=

¬

(hh)
2.11
2.10

=
8.5 ¬ ¬

¬

¬

=
2.16
2.10 2.28

¬ ¬

¬

=

¬ ¬ 2.12

¬

=
2.16

2.3
2.3

■

8.2 The (hh) rule is not necessary
It turns out that (hh) can actually be derived from the other rules. Before proving this, since the
proof of Lemma 2.3 uses (hh), we will need to find a different way to cancel scalars first. The
following turns out to suffice:

=
(id)

=
(ba2)

=
(X)

=
(id) (hs)
= (35)

We can now prove (hh):

=

(id)
(zs)

=
(ba1)

=
(ba1)

=

(zs)
(id)

=
(X)

=

(id)
(hs)

=
(35)

(36)

The fact that we can derive (hh) from the other rules raises the question whether any other
rules are also not necessary. We hypothesise that they are in fact all needed. It is at least
the case that (zs) and (hh) are necessary: they are the only rules that relate higher-arity spiders,
respectively H-boxes, to lower arity ones (this argument can be formalised by presenting alternative
interpretations into linear maps that change what higher-arity spiders/H-boxes correspond to). (id)
is also necessary as it is the only rule that relates a generator to the identity wire. At least one of
(ba1) and (ba2) is necessary as they are the only ones that relate an empty diagram to a non-empty
diagram (the n = m = 0 case). We do not know of any argument for the necessity of the other
rules (m) and (o), although it seems likely that they are both necessary.

8.3 Merging the intro and average rule
The intro rule (I) and the average rule (A) can be subsumed by a single larger rule. Before we
present this rule, let us first present an alternative to (A) that holds when the ring contains a half.
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Lemma 8.7. Let R be a ring with a half. In the presence of the other rules in Figure 3, (A) is
equivalent in ZHR to the following rule:

a b
=

a+b
2

¬

2 (37)

Proof. As the LHS of (A) agrees with the LHS of (37), it suffices to show that the RHS of both
are equal. Note first that:

2 2
=¬

1
2

=
1
2

(id)
7.4

(m)
(U)

2
¬ (38)

Hence:

=
a+ b 2

¬

a+ b 1
2

(38)
=

a+b
2

(m)
(id)

Note that this only shows that (A) implies (37), as we proved Lemma 7.4 using (A).
For the converse direction, we have

a+b
2

2 =
a+b

2

2
¬

=
a+b

2

2

¬

2
¬

=
a+b

2

2
¬

2
¬

¬

=
a+b

22 2
¬ =

a+ b2
¬

2.27
(zs)
(id)

(I) 2.22
(zs)

2.27 (M)

which implicitly uses a straightforward generalisation of Lemma 2.27 to H-boxes with arities other
than 3 and with phase labels. None of the lemmas invoked in this proof, nor their antecedents,
rely on (A). ■

Theorem 8.8 ([48]). Let R be a ring with a half. In the presence of the other rules of Figure 3,
the combination of the rules (I) and (A) is equivalent to the following rule:

a+ b a− b=
¬

0a b (39)

Proof. As the ZHR-calculus is complete with the rules presented in Figure 3, and (39) is easily
shown to be sound for any a and b, the equation (39) can be proven using (I) and (A) for any
particular choice of a and b. Alternatively, by using the ZH-calculus over the polynomial ring in
two variables R[a, b], there is also a proof of it using the variables a and b directly.

It hence remains to show that (39) together with (Figure 3) \ {(A), (I)} implies both (I) and
(A). We will first prove (37). By plugging a white dot into the top wire of (39) we get this, except
for a scalar factor that will be shown to cancel afterwards:

a+ b a− b =
¬

0a ba+ b a− b

¬

=

(id)
(zs) (39)

= a
b

(X)
2.21

= a

2.26

=
a

(zs)
(id)(HS) 0

b0(X) b0

2.21

=
a

(M) 0

(40)
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Bending the wires up, and taking a := a′+b′

2 and b := a′−b′

2 gives (37) for a′ and b′ (up to scalar
factors). Using this we note that:

0
= 1−1

2
= 1 −1

¬

= −1
¬

= =
(40)2.3 7.3 2.19

(zs)
(X)
(id)

0 0
(41)

We can use this to show that the scalar involving H(0) cancels:

=0
(M)

0 0
=

0 0

2.21
=

(41)
=

(X)
=

(hh)
2.3

=

(zs)
2.3

(42)

Hence, (40) and (41) reduce to what we would expect. We still need to show that a scalar white
dot is equal to H(2). First we need to know how to decompose H( 1

2 ):

1 0
=1

2

¬

2.3

1
2

=
(40)

0
¬

=
7.3

0
=

(zs)
2.19

(HS)

=
(id)

0

0

(42)

=
(41)

=
2.16

(43)

Now proving the equivalent of Lemma 7.7 is straightforward:

=
7.3 (43) ¬

=1 =
(M)

2 1
2

2.27

2
2.3
=

2.27

2

(X)
=

2

2.4
= 2

Combining (40) with this now gives us (37).
Finally, by taking b = 0 in (39), we can derive (I):

a a =
¬

0a 0
(39)

= 0a

(41)
2.21

2.26

= a

(HS)
(zs)

= a

(42)

a =
2.16

0
0

2.10 (42)

=
a

(id)0(X)

We can now apply the argument of Lemma 8.7 to get (A). ■

8.4 ZH-calculus as a complete language for Toffoli+Hadamard circuits
The ZH-calculus presented in Section 2 is universal and complete for matrices over the ring Z[ 1

2 ]. As
shown in [3], the unitary matrices over Z[ 1

2 ] correspond to circuits generated by Toffoli and H⊗H,
or in other words, circuits consisting of Toffoli gates and an even number of Hadamard gates. The
reason these matrices, and thus the ZH-calculus, are restricted to an even number of Hadamard
gates is because of the normalisation of the individual binary H-boxes: we have J K =

( 1 1
1 −1

)
,

which differs from the unitary Hadamard gate by a factor of 1√
2 . With all generators being

interpreted as matrices over Z[ 1
2 ], a diagram containing an odd number of binary H-boxes can

hence not be normalised to be unitary.
We chose to define the interpretation of the generator to be 1

2 , because it led to the simplest
possible calculus. By redefining the interpretation of this generator, we can make ZH-diagrams
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represent matrices M = ( 1√
2 )nA where A is a matrix over Z, which correspond precisely to the

matrices generated by the Toffoli+Hadamard gate set [3]. We do this by redefining the generator
to represent 1√

2 instead of 1
2 . By replacing every occurrence of by two stars in the definitions

of Section 2, and in all the derivations of the preceding sections, all the derivations remain sound
under this new interpretation. In particular, the derivation that each diagram can be reduced to
normal form remains true. For almost any diagram we can also bring the diagram to reduced
normal form, with one class of exceptions: if the diagram represents the zero matrix then the
reduced normal form should contain no stars. However, when we reinterpret the star (and thus
double the number of occurrences in the rewrite rules) we see that all rewrite rules preserve the
parity of the number of stars in the diagram. Hence, the following equality that says that 1√

2 ·0 = 0
is not derivable with those rules:

Using J K = 1√
2

= (44)

Adding this as another rewrite rule solves this edge case and we still get a complete calculus, but
now for matrices of the form ( 1√

2 )nA where A only contains integers.

9 Conclusion
We studied the ZH-calculus, a graphical language for reasoning about qubit quantum computing.
We found a small set of rewrite rules motivated by basic identities between Boolean functions
that allowed us to prove completeness of the fragment that corresponds to the Toffoli-Hadamard
gateset. We then extended the ZH-calculus so that it can represent matrices over arbitrary rings
where 2 is not a zero divisor. We found an extended ruleset that is complete for any such ring.
We have argued that our calculus, both the parameter-free one, as well as the one complete over
any ring, is the simplest complete graphical calculus for an approximately universal fragment of
quantum computing found so far.

Of the rules of the ZH-calculus as presented in Figure 1, we showed that (hh) is actually not
necessary, as it can be proven from the others. We believe that the rest are all necessary for
completeness. In Section 8.1 we showed that (o) can be replaced by two smaller and simpler to
understand rules. It might perhaps be possible to show that only one of these suffices, which would
give us a simpler axiomatisation. For the ZHR-calculus we required a meta-rule to cancel scalars
when 1

2 ̸∈ R. It is not clear at the moment whether the calculus is complete without this meta-rule.
The phase-free calculus with its translation to Boolean functions elucidates the relationship

between classical computation and universal quantum computation using the Toffoli-Hadamard
gate set. Correspondingly, the ZH-calculus over arbitrary rings should be useful for analysing
universal quantum computation with multiply-controlled gates as well as quantum computation or
error-correction schemes involving hypergraph states. The Fourier-transform relationship between
the ZH-calculus over C and the ZX-calculus [36] also points towards the usefulness of combining
the ZX- and ZH-calculus, and translating between them. Indeed, [17] already exhibits a combined
calculus called the ZXH-calculus. Whether on its own or in combination with other graphical
languages, the ZH-calculus has applications in a broad range of areas of quantum computing.
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