Compositionality

The open-access journal for the mathematics of composition

Operadic categories as a natural environment for Koszul duality

Michael Batanin and Martin Markl

Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, The Czech Republic
MFF UK, Sokolovská 83, 186 75 Prague 8, The Czech Republic

ABSTRACT

This is the first paper of a series which aims to set up the cornerstones of Koszul duality for operads over operadic categories. To this end we single out additional properties of operadic categories under which the theory of quadratic operads and their Koszulity can be developed, parallel to the traditional one by Ginzburg–Kapranov. We then investigate how these extra properties interact with discrete operadic (op)fibrations, which we use as a powerful tool to construct new operadic categories from old ones. We pay particular attention to the operadic category of graphs, giving a full description of this category (and its variants) as an operadic category, and proving that it satisfies all the additional properties.

Our present work provides an answer to a question formulated in Loday's last talk, in 2012: "What encodes types of operads?". In the second and third papers of our series we continue Loday's program by answering his second question: "How to construct Koszul duals to these objects?", and proving Koszulity of some of the most relevant operads.

► BibTeX data

► References

[1] C. Barwick. From operator categories to higher operads. Geom. Topol., 22(4):1893–1959, 2018. 10.2140/​gt.2018.22.1893.
https:/​/​doi.org/​10.2140/​gt.2018.22.1893

[2] M.A. Batanin. Monoidal globular categories as a natural environment for the theory of weak $n$-categories. Adv. Math., 136(1):39–103, 1998. 10.1006/​aima.1998.1724.
https:/​/​doi.org/​10.1006/​aima.1998.1724

[3] M.A. Batanin. Symmetrisation of $n$-operads and compactification of real configuration spaces. Adv. Math., 211(2):684–725, 2007. 10.1016/​j.aim.2006.07.022.
https:/​/​doi.org/​10.1016/​j.aim.2006.07.022

[4] M.A. Batanin. The Eckmann-Hilton argument and higher operads. Adv. Math., 217(1):334–385, 2008. 10.1016/​j.aim.2007.06.014.
https:/​/​doi.org/​10.1016/​j.aim.2007.06.014

[5] M.A. Batanin. Locally constant $n$-operads as higher braided operads. J. Noncommut. Geom., 4(2):237–265, 2010. 10.4171/​JNCG/​54.
https:/​/​doi.org/​10.4171/​JNCG/​54

[6] M.A. Batanin and M. Markl. Operadic categories and duoidal Deligne's conjecture. Adv. Math., 285:1630–1687, 2015. 10.1016/​j.aim.2015.07.008.
https:/​/​doi.org/​10.1016/​j.aim.2015.07.008

[7] M.A. Batanin and M. Markl. Koszul duality for operadic categories. Compositionality, 5(4), 2023. 10.32408/​compositionality-5-4.
https:/​/​doi.org/​10.32408/​compositionality-5-4

[8] M.A. Batanin, M. Markl, and J. Obradović. Minimal models for graph-related (hyper)operads. J. Pure Appl. Algebra, 227(7):107329, 2023. 10.1016/​j.jpaa.2023.107329.
https:/​/​doi.org/​10.1016/​j.jpaa.2023.107329

[9] M.A. Batanin and C. Berger. Homotopy theory for algebras over polynomial monads. Theory Appl. Categ., 32(6):148–253, 2017. http:/​/​www.tac.mta.ca/​tac/​volumes/​32/​6/​32-06abs.html.
http:/​/​www.tac.mta.ca/​tac/​volumes/​32/​6/​32-06abs.html

[10] M.A. Batanin, J. Kock, and M. Weber. Regular patterns, substitudes, Feynman categories and operads. Theory Appl. Categ., 33(7):148–192, 2018. http:/​/​www.tac.mta.ca/​tac/​volumes/​33/​7/​33-07abs.html.
http:/​/​www.tac.mta.ca/​tac/​volumes/​33/​7/​33-07abs.html

[11] C. Berger and R.M. Kaufmann. Comprehensive factorization systems. Tbilisi Math. J., 10(3):255–277, 2017. 10.1515/​tmj-2017-0112.
https:/​/​doi.org/​10.1515/​tmj-2017-0112

[12] C. Berger and I. Moerdijk. Resolution of coloured operads and rectification of homotopy algebras. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 31–58. Amer. Math. Soc., Providence, RI, 2007.

[13] J.M. Boardman and R.M. Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces. Vol. 347 of Lecture Notes in Mathematics, Springer-Verlag, 1973.

[14] D. Borisov and Y. Manin. Generalised operads and their inner cohomomorphisms. Geometry and dynamics of groups and spaces, vol.265, Progress in Mathematics, pages 247–308, Birkhäuser, Basel, 2008. 10.1007/​978-3-7643-8608-5_4.
https:/​/​doi.org/​10.1007/​978-3-7643-8608-5_4

[15] Z. Fiedorowicz. The symmetric bar construction. Preprint, 1992.

[16] W.L. Gan. Koszul duality for dioperads. Math. Res. Lett., 10(1):109–124, 2003. 10.4310/​MRL.2003.v10.n1.a11.
https:/​/​doi.org/​10.4310/​MRL.2003.v10.n1.a11

[17] R. Garner, J. Kock, and M. Weber. Operadic categories and décalage. Adv. Math., 377:107440, 2021. 10.1016/​j.aim.2020.107440.
https:/​/​doi.org/​10.1016/​j.aim.2020.107440

[18] E. Getzler. Operads revisited. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, volume 269 of Progress in Mathematics, pages 675–698. Birkhäuser, Boston, MA, January 2009. 10.1007/​978-0-8176-4745-2_16.
https:/​/​doi.org/​10.1007/​978-0-8176-4745-2_16

[19] E. Getzler and M.M. Kapranov. Cyclic operads and cyclic homology. In S.-T. Yau, editor, Geometry, Topology and Physics for Raoul Bott, volume 4 of Conf. Proc. Lect. Notes. Geom. Topol., pages 167–201. International Press, 1995.

[20] E. Getzler and M.M. Kapranov. Modular operads. Compos. Math., 110(1):65–126, 1998. 10.1023/​A:1000245600345.
https:/​/​doi.org/​10.1023/​A:1000245600345

[21] R.M. Kaufmann and B.C. Ward. Feynman Categories. Asterisque, 387:x+161, 2017.

[22] J. Kock. Cospan construction of the graph category of Borisov and Manin. Publ. Mat., 62(2): 331–353, 2018. 10.5565/​PUBLMAT6221802.
https:/​/​doi.org/​10.5565/​PUBLMAT6221802

[23] S. Lack. Operadic categories and their skew monoidal categories of collections. High. Struct., 2(1):1–29, 2018. 10.21136/​HS.2018.01.
https:/​/​doi.org/​10.21136/​HS.2018.01

[24] T.G. Lavers. The theory of vines. Comm. Algebra, 25(4):1257–1284, 1997. 10.1080/​00927879708825919.
https:/​/​doi.org/​10.1080/​00927879708825919

[25] J. Leray. Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson. PhD thesis, University of Angers, 2017.

[26] J.-L. Loday. Algebras, operads, combinads. Slides of a talk given at HOGT Lille on 23th of March 2012.

[27] J.-L. Loday and M.O. Ronco. Permutads. J. Combin. Theory Ser. A, 120(2):340–365, 2013. 10.1016/​j.jcta.2012.08.005.
https:/​/​doi.org/​10.1016/​j.jcta.2012.08.005

[28] M. Markl. Models for operads. Comm. Algebra, 24(4):1471–1500, 1996. 10.1080/​00927879608825647.
https:/​/​doi.org/​10.1080/​00927879608825647

[29] M. Markl. Operads and PROPs. In Handbook of algebra. Vol. 5, pages 87–140. Elsevier/​North-Holland, Amsterdam, 2008. 10.1016/​S1570-7954(07)05002-4.
https:/​/​doi.org/​10.1016/​S1570-7954(07)05002-4

[30] M. Markl. A resolution (minimal model) of the PROP for bialgebras. J. Pure Appl. Algebra, 205(2):341–374, 2006. 10.1016/​j.jpaa.2005.07.007.
https:/​/​doi.org/​10.1016/​j.jpaa.2005.07.007

[31] M. Markl. Permutads via operadic categories, and the hidden associahedron. J. Combin. Theory Ser. A, 175:105277, 2020. 10.1016/​j.jcta.2020.105277.
https:/​/​doi.org/​10.1016/​j.jcta.2020.105277

[32] M. Markl, S.A. Merkulov, and S. Shadrin. Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra, 213(4):496–535, 2009. 10.1016/​j.jpaa.2008.08.007.
https:/​/​doi.org/​10.1016/​j.jpaa.2008.08.007

[33] M. Markl, S. Shnider, and J.D. Stasheff. Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

[34] M. Markl and A.A. Voronov. PROPped-up graph cohomology. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progress in Mathematics, pages 249–281. Birkhäuser, Boston, MA, 2009. 10.1007/​978-0-8176-4747-6_8.
https:/​/​doi.org/​10.1007/​978-0-8176-4747-6_8

[35] J.P. May. The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, Vol. 271. Springer-Verlag, Berlin, 1972.

[36] P.-A. Melliès and N. Tabareau. Free models of T-algebraic theories computed as Kan extensions. Unpublished article accompanying a talk given at CT08 in Calais, available from HAL, https:/​/​hal.archives-ouvertes.fr/​hal-00339331.
https:/​/​hal.archives-ouvertes.fr/​hal-00339331

[37] B. Vallette. A Koszul duality for props. Trans. Amer. Math. Soc., 359(10):4865–4943, 2007. 10.1090/​S0002-9947-07-04182-7.
https:/​/​doi.org/​10.1090/​S0002-9947-07-04182-7

[38] M. Weber. Internal algebra classifiers as codescent objects of crossed internal categories. Theory Appl. Categ., 30(50):1713–1792, 2015. http:/​/​www.tac.mta.ca/​tac/​volumes/​30/​50/​30-50abs.html.
http:/​/​www.tac.mta.ca/​tac/​volumes/​30/​50/​30-50abs.html

[39] J. Yoshida. Group operads as crossed interval groups. Preprint, arXiv:1806.03012, 2018.
arXiv:1806.03012

Cited by

[1] Michael Batanin and Martin Markl, "Koszul duality for operadic categories", Compositionality 5, 4 (2023).

[2] PHILIP HACKNEY, "Categories of graphs for operadic structures", Mathematical Proceedings of the Cambridge Philosophical Society 176 1, 155 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-28 10:13:20). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-28 10:13:20).