Compositionality

The open-access journal for the mathematics of composition

Traced Monads and Hopf Monads

Masahito Hasegawa1 and Jean-Simon Pacaud Lemay2

1Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
2School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales, Australia

ABSTRACT

A traced monad is a monad on a traced symmetric monoidal category that lifts the traced symmetric monoidal structure to its Eilenberg-Moore category. A long-standing question has been to provide a characterization of traced monads without explicitly mentioning the Eilenberg-Moore category. On the other hand, a symmetric Hopf monad is a symmetric bimonad whose fusion operators are invertible. For compact closed categories, symmetric Hopf monads are precisely the kind of monads that lift the compact closed structure to their Eilenberg-Moore categories. Since compact closed categories and traced symmetric monoidal categories are closely related, it is a natural question to ask what is the relationship between Hopf monads and traced monads. In this paper, we introduce trace-coherent Hopf monads on traced monoidal categories, which can be characterized without mentioning the Eilenberg-Moore category. The main theorem of this paper is that a symmetric Hopf monad is a traced monad if and only if it is a trace-coherent Hopf monad. We provide many examples of trace-coherent Hopf monads, such as those induced by cocommutative Hopf algebras or any symmetric Hopf monad on a compact closed category. We also explain how for traced Cartesian monoidal categories, trace-coherent Hopf monads can be expressed using the Conway operator, while for traced coCartesian monoidal categories, any trace-coherent Hopf monad is an idempotent monad. We also provide separating examples of traced monads that are not Hopf monads, as well as symmetric Hopf monads that are not trace-coherent.

► BibTeX data

► References

[1] S. Abramsky. Abstract scalars, loops, and free traced and strongly compact closed categories. In International Conference on Algebra and Coalgebra in Computer Science, pages 1–29. Springer, 2005. 10.1007/​11548133_1.
https:/​/​doi.org/​10.1007/​11548133_1

[2] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages 415–425. IEEE, 2004. 10.1109/​LICS.2004.1319636.
https:/​/​doi.org/​10.1109/​LICS.2004.1319636

[3] S. Abramsky and B. Coecke. Abstract physical traces. Theory and Applications of Categories, 14 (6): 111–124, 2005. http:/​/​www.tac.mta.ca/​tac/​volumes/​14/​6/​14-06abs.html.
http:/​/​www.tac.mta.ca/​tac/​volumes/​14/​6/​14-06abs.html

[4] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science, 12 (5): 625–665, 2002. 10.1017/​S0960129502003730.
https:/​/​doi.org/​10.1017/​S0960129502003730

[5] J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages 1–77. Springer, 1967. 10.1007/​BFb0074299.
https:/​/​doi.org/​10.1007/​BFb0074299

[6] F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge University Press, 1994. 10.1017/​CBO9780511525865.
https:/​/​doi.org/​10.1017/​CBO9780511525865

[7] A. Bruguières and A. Virelizier. Hopf monads. Advances in Mathematics, 215 (2): 679–733, 2007. 10.1016/​j.aim.2007.04.011.
https:/​/​doi.org/​10.1016/​j.aim.2007.04.011

[8] A. Bruguieres, S. Lack, and A. Virelizier. Hopf monads on monoidal categories. Advances in Mathematics, 227 (2): 745–800, 2011. 10.1016/​j.aim.2011.02.008.
https:/​/​doi.org/​10.1016/​j.aim.2011.02.008

[9] E. Haghverdi. Unique decomposition categories, geometry of interaction and combinatory logic. Mathematical Structures in Computer Science, 10 (2): 205–230, 2000. 10.1017/​S0960129599003035.
https:/​/​doi.org/​10.1017/​S0960129599003035

[10] M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In Typed Lambda Calculi and Applications, pages 196–213, Berlin, Heidelberg, 1997. Springer. 10.1007/​3-540-62688-3_37.
https:/​/​doi.org/​10.1007/​3-540-62688-3_37

[11] M. Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec. Springer, 1999. 10.1007/​978-1-4471-0865-8.
https:/​/​doi.org/​10.1007/​978-1-4471-0865-8

[12] M. Hasegawa. The uniformity principle on traced monoidal categories. Publications of the Research Institute for Mathematical Sciences, 40 (3): 991–1014, 2004. 10.1016/​S1571-0661(04)80563-2.
https:/​/​doi.org/​10.1016/​S1571-0661(04)80563-2

[13] M. Hasegawa. On traced monoidal closed categories. Mathematical Structures in Computer Science, 19 (2): 217–244, 2009. 10.1017/​S0960129508007184.
https:/​/​doi.org/​10.1017/​S0960129508007184

[14] M. Hasegawa and J.-S. P. Lemay. Linear distributivity with negation, star-autonomy, and Hopf monads. Theory and Applications of Categories, 33 (37): 1145–1157, 2018. http:/​/​www.tac.mta.ca/​tac/​volumes/​33/​37/​33-37abs.html.
http:/​/​www.tac.mta.ca/​tac/​volumes/​33/​37/​33-37abs.html

[15] M. Hasegawa, M. Hofmann, and G. Plotkin. Finite dimensional vector spaces are complete for traced symmetric monoidal categories. In Pillars of computer science, pages 367–385. Springer, 2008. 10.1007/​978-3-540-78127-1_20.
https:/​/​doi.org/​10.1007/​978-3-540-78127-1_20

[16] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119 (3): 447–468, 1996. 10.1017/​S0305004100074338.
https:/​/​doi.org/​10.1017/​S0305004100074338

[17] P. McCrudden. Opmonoidal monads. Theory Appl. Categ, 10 (19): 469–485, 2002.

[18] I. Moerdijk. Monads on tensor categories. Journal of Pure and Applied Algebra, 168 (2): 189–208, 2002. 10.1016/​S0022-4049(01)00096-2.
https:/​/​doi.org/​10.1016/​S0022-4049(01)00096-2

[19] P. Selinger. Categorical structure of asynchrony. Electronic Notes in Theoretical Computer Science, 20: 158–181, 1999. 10.1016/​S1571-0661(04)80073-2.
https:/​/​doi.org/​10.1016/​S1571-0661(04)80073-2

[20] P. Selinger. A survey of graphical languages for monoidal categories. In New Structures for Physics, pages 289–355. Springer, 2010. 10.1007/​978-3-642-12821-9_4.
https:/​/​doi.org/​10.1007/​978-3-642-12821-9_4

[21] A. Simpson. A characterisation of the least-fixed-point operator by dinaturality. Theoretical Computer Science, 118 (2): 301–314, 1993. 10.1016/​0304-3975(93)90112-7.
https:/​/​doi.org/​10.1016/​0304-3975(93)90112-7

[22] A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science, pages 30–41. IEEE, 2000. 10.1109/​LICS.2000.855753.
https:/​/​doi.org/​10.1109/​LICS.2000.855753

[23] G. Stefanescu. Network Algebra. Springer, 2000. 10.1007/​978-1-4471-0479-7.
https:/​/​doi.org/​10.1007/​978-1-4471-0479-7

[24] V. Turaev and A. Virelizier. Monoidal Categories and Topological Field Theory, volume 322 of Progress in Mathematics. Birkhauser, 2017. 10.1007/​978-3-319-49834-8.
https:/​/​doi.org/​10.1007/​978-3-319-49834-8

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-27 10:11:30). On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-27 10:11:30).