Compositionality

The open-access journal for the mathematics of composition

Structured versus Decorated Cospans

John C. Baez1,2, Kenny Courser1, and Christina Vasilakopoulou3

1Department of Mathematics, University of California, Riverside CA, USA 92521
2Centre for Quantum Technologies, National University of Singapore, Singapore 117543
3Department of Mathematics, University of Patras, Greece 265 04

ABSTRACT

One goal of applied category theory is to understand open systems. We compare two ways of describing open systems as cospans equipped with extra data. First, given a functor $L \colon \mathsf{A}\to \mathsf{X}$, a `structured cospan' is a diagram in $\mathsf{X}$ of the form $L(a) \rightarrow x \leftarrow L(b)$. We give a new proof that if $\mathsf{A}$ and $\mathsf{X}$ have finite colimits and $L$ preserves them, there is a symmetric monoidal double category whose objects are those of $\mathsf{A}$ and whose horizontal 1-cells are structured cospans. Second, given a pseudofunctor $F \colon \mathsf{A}\to \mathbf {Cat}$, a `decorated cospan' is a diagram in $\mathsf{A}$ of the form $a \rightarrow m \leftarrow b$ together with an object of $F(m)$. Generalizing the work of Fong, we show that if $\mathsf{A}$ has finite colimits and $F \colon (\mathsf{A},+) \to (\mathbf {Cat},\times)$ is symmetric lax monoidal, there is a symmetric monoidal double category whose objects are those of $\mathsf{A}$ and whose horizontal 1-cells are decorated cospans. We prove that under certain conditions, these two constructions become isomorphic when we take $\mathsf{X}= \smallint F$ to be the Grothendieck category of $F$. We illustrate these ideas with applications to electrical circuits, Petri nets, dynamical systems and epidemiological modeling.

► BibTeX data

► References

[1] AlgebraicPetri team, GitHub repository. https:/​/​github.com/​AlgebraicJulia/​AlgebraicPetri.jl.
https:/​/​github.com/​AlgebraicJulia/​AlgebraicPetri.jl

[2] A. Baas, J. Fairbanks, M. Halter, S. Libkind and E. Patterson, An algebraic framework for structured epidemic modeling. https:/​/​doi.org/​10.48550/​arxiv.2203.16345.
https:/​/​doi.org/​10.48550/​arxiv.2203.16345

[3] J. C. Baez and K. Courser, Structured cospans, Theory Appl. Categ. 35 (2020), 1771–1822. https:/​/​doi.org/​10.48550/​arXiv.1911.04630.
https:/​/​doi.org/​10.48550/​arXiv.1911.04630

[4] J. C. Baez, B. Coya and F. Rebro, Props in network theory, Theory Appl. Categ. 33 (2018), 727–783. https:/​/​doi.org/​10.48550/​arXiv.1707.08321.
https:/​/​doi.org/​10.48550/​arXiv.1707.08321

[5] J. C. Baez and J. Erbele, Categories in control, Theory Appl. Categ. 30 (2015), 836–881. https:/​/​doi.org/​10.48550/​arXiv.1405.6881.
https:/​/​doi.org/​10.48550/​arXiv.1405.6881

[6] J. C. Baez and B. Fong, A compositional framework for passive linear networks, Theory Appl. Categ. 33 (2018), 1158–1222. https:/​/​doi.org/​10.48550/​arXiv.1504.05625.
https:/​/​doi.org/​10.48550/​arXiv.1504.05625

[7] J. C. Baez, B. Fong and B. S. Pollard, A compositional framework for Markov processes, Jour. Math. Phys. 57 (2016), 033301. https:/​/​doi.org/​10.1063/​1.4941578. Also available at https:/​/​doi.org/​10.48550/​arXiv.1508.06448.
https:/​/​doi.org/​10.1063/​1.4941578

[8] J. C. Baez and J. Master, Open Petri nets, Math. Struct. Comput. Sci. 30 (2020), 314–341. https:/​/​doi.org/​10.1017/​s0960129520000043. Also available at https:/​/​doi.org/​10.48550/​arXiv.1808.05415.
https:/​/​doi.org/​10.1017/​s0960129520000043

[9] J. C. Baez and B. S. Pollard, A compositional framework for reaction networks, Rev. Math. Phys. 29 (2017), 1750028. https:/​/​doi.org/​10.1142/​S0129055X17500283. Also available at https:/​/​doi.org/​10.48550/​arXiv.1704.02051.
https:/​/​doi.org/​10.1142/​S0129055X17500283

[10] G. Bakirtzis, C. H. Fleming and C. Vasilakopoulou, Categorical semantics of cyber-physical systems theory, ACM Trans. Cyber-Phys. Syst. 5 (2021). https:/​/​doi.org/​10.1145/​3461669. Also available at https:/​/​doi.org/​10.48550/​arXiv.2010.08003.
https:/​/​doi.org/​10.48550/​arXiv.2010.08003

[11] F. Bonchi, P. Sobociński and F. Zanasi, A categorical semantics of signal flow graphs, in CONCUR 2014–Concurrency Theory, eds. P. Baldan and D. Gorla, Lecture Notes in Computer Science 8704, Springer, Berlin, 2014, pp. 435–450. https:/​/​doi.org/​10.1007/​978-3-662-44584-6_30.
https:/​/​doi.org/​10.1007/​978-3-662-44584-6_30

[12] F. Borceux, Handbook of Categorical Algebra, vol. 2, Cambridge University Press, Cambridge, 1994. https:/​/​doi.org/​10.1017/​CBO9780511525865.
https:/​/​doi.org/​10.1017/​CBO9780511525865

[13] M. Bunge and M. Fiore, Unique factorisation lifting functors and categories of linearly-controlled processes, Math. Struct. Comput. Sci. 10 (2000), 137–163. https:/​/​doi.org/​10.1017/​S0960129599003023.
https:/​/​doi.org/​10.1017/​S0960129599003023

[14] D. Cicala and C. Vasilakopoulou, On adjoints and fibrations. In preparation.

[15] K. Courser, A bicategory of decorated cospans, Theory Appl. Categ. 32 (2017), 995–1027. https:/​/​doi.org/​10.48550/​arXiv.1605.08100.
https:/​/​doi.org/​10.48550/​arXiv.1605.08100

[16] K. Courser, Open Systems: a Double Categorical Perspective, Ph.D. thesis, Department of Mathematics, U. C. Riverside, 2020. https:/​/​doi.org/​10.48550/​arXiv.2008.02394.
https:/​/​doi.org/​10.48550/​arXiv.2008.02394

[17] G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, PNAS 103 (2006), 8697–8702. https:/​/​doi.org/​10.1073/​pnas.0602767103.
https:/​/​doi.org/​10.1073/​pnas.0602767103

[18] B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), 99–157. https:/​/​doi.org/​10.1006/​aima.1997.1649.
https:/​/​doi.org/​10.1006/​aima.1997.1649

[19] B. Fong, Decorated cospans, Theory Appl. Categ. 30 (2015), 1096–1120. https:/​/​doi.org/​10.48550/​arXiv.1502.00872.
https:/​/​doi.org/​10.48550/​arXiv.1502.00872

[20] B. Fong, The Algebra of Open and Interconnected Systems, Ph.D. thesis, Computer Science Department, University of Oxford, 2016. https:/​/​doi.org/​10.48550/​arXiv.1609.05382.
https:/​/​doi.org/​10.48550/​arXiv.1609.05382

[21] B. Fong, P. Rapisarda and P. Sobocinski, A categorical approach to open and interconnected dynamical systems, in Proceedings of the 31st Annual ACM/​IEEE Symposium on Logic in Computer Science (LICS), IEEE, New York, 2016, pp. 1–10. https:/​/​doi.org/​10.1145/​2933575.2934556. Also available at https:/​/​doi.org/​10.48550/​arXiv.1510.05076.
https:/​/​doi.org/​10.1145/​2933575.2934556

[22] C. Girault and R. Valk, Petri Nets for Systems Engineering: a Guide to Modeling, Verification, and Applications, Springer, Berlin, 2013. https:/​/​doi.org/​10.1007/​978-3-662-05324-9.
https:/​/​doi.org/​10.1007/​978-3-662-05324-9

[23] R. Gordon, A. J. Power and R. Street, Coherence for tricategories, Mem. Amer. Math. Soc. 558, 1995. https:/​/​doi.org/​10.1090/​memo/​0558.
https:/​/​doi.org/​10.1090/​memo/​0558

[24] M. Grandis and R. Paré, Limits in double categories, Cah. Top. Géom. Diff. 40 (1999), 162–220. http:/​/​www.numdam.org/​item/​CTGDC$\underline{ }$1999$\underline{ }$40$\underline{ }$3$\underline{ }$162$\underline{ }$0/​.
http:/​/​www.numdam.org/​item/​CTGDC_1999__40_3_162_0/​

[25] M. Grandis and R. Paré, Adjoints for double categories, Cah. Top. Géom. Diff. 45 (2004), 193–240. http:/​/​www.numdam.org/​item/​CTGDC$\underline{ }$2004$\underline{ }$45$\underline{ }$3$\underline{ }$193$\underline{ }$0/​.
http:/​/​www.numdam.org/​item/​CTGDC_2004__45_3_193_0/​

[26] J. Gray, Fibred and cofibred categories, in Proceedings of the Conference on Categorical Algebra: La Jolla 1965, eds. S. Eilenberg et al, Springer, Berlin, 1966, pp. 21–83. https:/​/​doi.org/​10.1007/​978-3-642-99902-4_2.
https:/​/​doi.org/​10.1007/​978-3-642-99902-4_2

[27] P. J. Haas, Stochastic Petri Nets: Modelling, Stability, Simulation, Springer, Berlin, 2002. https:/​/​doi.org/​10.1007/​b97265.
https:/​/​doi.org/​10.1007/​b97265

[28] L. W. Hansen and M. Shulman, Constructing symmetric monoidal bicategories functorially. https:/​/​doi.org/​10.48550/​arXiv.1910.09240.
https:/​/​doi.org/​10.48550/​arXiv.1910.09240

[29] C. Hermida, Some properties of Fib as a fibred 2-category, J. Pure Appl. Alg. 134 (1999), 83–109. https:/​/​doi.org/​10.1016/​S0022-4049(97)00129-1.
https:/​/​doi.org/​10.1016/​S0022-4049(97)00129-1

[30] B. Jacobs, Categorical Logic and Type Theory, Elsevier, Amsterdam, 1999. https:/​/​doi.org/​10.2307/​4212146.
https:/​/​doi.org/​10.2307/​4212146

[31] A. Joyal, M. Nielsen and G. Winskel, Bisimulation from open maps, Inf. Comput. 127 (1996), 164–185. https:/​/​doi.org/​10.1006/​inco.1996.0057.
https:/​/​doi.org/​10.1006/​inco.1996.0057

[32] P. Katis, N. Sabadini and R. F. C. Walters, On the algebra of systems with feedback and boundary, Rendiconti del Circolo Matematico di Palermo Serie II 63 (2000), 123–156. https:/​/​citeseerx.ist.psu.edu/​viewdoc/​download?doi=10.1.1.51.5758&rep=rep1&type=pdf.
https:/​/​citeseerx.ist.psu.edu/​viewdoc/​download?doi=10.1.1.51.5758&rep=rep1&type=pdf

[33] G. M. Kelly and R. Street, Review of the elements of 2-categories, in Category Seminar, ed. G. M. Kelly, Lecture Notes in Mathematics 40, Springer, Berlin, 1974, pp. 75–103. https:/​/​doi.org/​10.1007/​BFb0063101.
https:/​/​doi.org/​10.1007/​BFb0063101

[34] I. Koch, Petri nets—a mathematical formalism to analyze chemical reaction networks, Mol. Inform. 29 (2010), 838–843. https:/​/​doi.org/​10.1002/​minf.201000086.
https:/​/​doi.org/​10.1002/​minf.201000086

[35] F. W. Lawvere, State categories and response functors, unpublished manuscript, 1986. https:/​/​github.com/​mattearnshaw/​lawvere/​blob/​master/​pdfs/​1986-state-categories-and-response-functors.pdf.
https:/​/​github.com/​mattearnshaw/​lawvere/​blob/​master/​pdfs/​1986-state-categories-and-response-functors.pdf

[36] P. McCrudden, Balanced coalgebroids, Theory Appl. Categ. 7 (2000), 71–147. https:/​/​www.emis.de/​journals/​TAC/​volumes/​7/​n6/​7-06abs.html.
https:/​/​www.emis.de/​journals/​TAC/​volumes/​7/​n6/​7-06abs.html

[37] J. Moeller and C. Vasilakopoulou, Monoidal Grothendieck construction, Theory Appl. Categ. 35 (2020), 1159–1207. https:/​/​doi.org/​10.48550/​arXiv.1809.00727.
https:/​/​doi.org/​10.48550/​arXiv.1809.00727

[38] S. Niefield, Span, cospan, and other double categories, Theory Appl. Categ. 26 (2012), 729–742. https:/​/​doi.org/​10.48550/​arXiv.1201.3789.
https:/​/​doi.org/​10.48550/​arXiv.1201.3789

[39] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, New Jersey, 1981. http:/​/​dl.icdst.org/​pdfs/​files3/​2bf95f7fde49a09814231bbcbe592526.pdf.
http:/​/​dl.icdst.org/​pdfs/​files3/​2bf95f7fde49a09814231bbcbe592526.pdf

[40] B. S. Pollard, Open Markov Processes and Reaction Networks, Ph.D. thesis, Department of Physics, U. C. Riverside, 2017. https:/​/​doi.org/​10.48550/​arXiv.1709.09743.
https:/​/​doi.org/​10.48550/​arXiv.1709.09743

[41] E. Riehl, Category Theory In Context, Dover Publications, New York, 2016. https:/​/​math.jhu.edu/​ eriehl/​context/​.
https:/​/​math.jhu.edu/​~eriehl/​context/​

[42] P. Schultz, D. Spivak and C. Vasilakopoulou, Dynamical systems and sheaves, Appl. Cat. Struct. 28 (2020), 1–57. https:/​/​doi.org/​10.1007/​s10485-019-09565-x. Also available at https:/​/​doi.org/​10.48550/​arXiv.1609.08086.
https:/​/​doi.org/​10.48550/​arXiv.1609.08086

[43] M. Shulman, Framed bicategories and monoidal fibrations, Theory Appl. Categ. 20 (2008), 650–738. https:/​/​doi.org/​10.48550/​arXiv.0706.1286.
https:/​/​doi.org/​10.48550/​arXiv.0706.1286

[44] M. Shulman, Constructing symmetric monoidal bicategories. https:/​/​doi.org/​10.48550/​arXiv.1004.0993.
https:/​/​doi.org/​10.48550/​arXiv.1004.0993

[45] M. Stay, Compact closed bicategories, Theory Appl. Categ. 31 (2016), 755–798. https:/​/​doi.org/​10.48550/​arXiv.1301.1053.
https:/​/​doi.org/​10.48550/​arXiv.1301.1053

[46] D. Vagner, D. Spivak and E. Lerman, Algebras of open dynamical systems on the operad of wiring diagrams, Theory Appl. Categ. 30 (2015), 1793–1822. https:/​/​doi.org/​10.48550/​arXiv.1408.1598.
https:/​/​doi.org/​10.48550/​arXiv.1408.1598

[47] D. J. Wilkinson, Stochastic Modelling for Systems Biology, Taylor and Francis, New York, 2006. https:/​/​doi.org/​10.1201/​b11812.
https:/​/​doi.org/​10.1201/​b11812

[48] J. C. Willems, The behavioral approach to open and interconnected systems, IEEE Control Systems Magazine 27 (2007), 46–99. https:/​/​doi.org/​10.1109/​MCS.2007.906923.
https:/​/​doi.org/​10.1109/​MCS.2007.906923

Cited by

Could not fetch Crossref cited-by data during last attempt 2024-11-05 03:31:20: Could not fetch cited-by data for 10.32408/compositionality-4-3 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2024-11-05 03:31:20).