Compositionality

The open-access journal for the mathematics of composition

Homotopy theory of Moore flows (I)

Philippe Gaucher

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

ABSTRACT

Erratum, 11 July 2022: This is an updated version of the original paper [20] in which the notion of reparametrization category was incorrectly axiomatized. Details on the changes to the original paper are provided in the Appendix.

A reparametrization category is a small topologically enriched semimonoidal category such that the semimonoidal structure induces a structure of a semigroup on objects, such that all spaces of maps are contractible and such that each map can be decomposed (not necessarily in a unique way) as a tensor product of two maps. A Moore flow is a small semicategory enriched over the biclosed semimonoidal category of enriched presheaves over a reparametrization category. We construct the q-model category of Moore flows. It is proved that it is Quillen equivalent to the q-model category of flows. This result is the first step to establish a zig-zag of Quillen equivalences between the q-model structure of multipointed $d$-spaces and the q-model structure of flows.

► BibTeX data

► References

[1] J. Adámek and J. Rosický. Locally presentable and accessible categories. Cambridge University Press, Cambridge, 1994. https:/​/​doi.org/​10.1017/​cbo9780511600579.004.
https:/​/​doi.org/​10.1017/​cbo9780511600579.004

[2] F. Borceux. Handbook of categorical algebra. 1. Cambridge University Press, Cambridge, 1994a. https:/​/​doi.org/​10.1017/​cbo9780511525858. Basic category theory.
https:/​/​doi.org/​10.1017/​cbo9780511525858

[3] F. Borceux. Handbook of categorical algebra. 2. Cambridge University Press, Cambridge, 1994b. https:/​/​doi.org/​10.1017/​cbo9780511525865. Categories and structures.
https:/​/​doi.org/​10.1017/​cbo9780511525865

[4] J. Bourke. Equipping weak equivalences with algebraic structure. Mathematische Zeitschrift, 294 (3-4): 995–1019, 2020. https:/​/​doi.org/​10.1007/​s00209-019-02305-w.
https:/​/​doi.org/​10.1007/​s00209-019-02305-w

[5] D. Dugger and D. C. Isaksen. Weak equivalences of simplicial presheaves. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, volume 346 of Contemporary Mathematics, pages 97–113. American Mathematical Society, Providence, RI, 2004. https:/​/​doi.org/​10.1090/​conm/​346/​06292.
https:/​/​doi.org/​10.1090/​conm/​346/​06292

[6] W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, and J. H. Smith. Homotopy limit functors on model categories and homotopical categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004. https:/​/​doi.org/​10.1090/​surv/​113.
https:/​/​doi.org/​10.1090/​surv/​113

[7] U. Fahrenberg and M. Raussen. Reparametrizations of continuous paths. Journal of Homotopy and Related Structures, 2 (2): 93–117, 2007.

[8] P. Gaucher. A model category for the homotopy theory of concurrency. Homology, Homotopy and Applications, 5 (1): p.549–599, 2003. https:/​/​doi.org/​10.4310/​hha.2003.v5.n1.a20.
https:/​/​doi.org/​10.4310/​hha.2003.v5.n1.a20

[9] P. Gaucher. Homological properties of non-deterministic branchings and mergings in higher dimensional automata. Homology, Homotopy and Applications, 7 (1): 51–76, 2005a. https:/​/​doi.org/​10.4310/​hha.2005.v7.n1.a4.
https:/​/​doi.org/​10.4310/​hha.2005.v7.n1.a4

[10] P. Gaucher. Comparing globular complex and flow. New York Journal of Mathematics, 11: 97–150, 2005b.

[11] P. Gaucher. T-homotopy and refinement of observation (III) : Invariance of the branching and merging homologies. New York Journal of Mathematics, 12: 319–348, 2006a.

[12] P. Gaucher. T-homotopy and refinement of observation (IV): Invariance of the underlying homotopy type. New York Journal of Mathematics, 12: 63–95, 2006b.

[13] P. Gaucher. Homotopical interpretation of globular complex by multipointed d-space. Theory and Applications of Categories, 22 (22): 588–621, 2009.

[14] P. Gaucher. Two model categories I would like to know if they are Quillen equivalent or not. MathOverflow, 2013. https:/​/​mathoverflow.net/​q/​135738.
https:/​/​mathoverflow.net/​q/​135738

[15] P. Gaucher. Enriched diagrams of topological spaces over locally contractible enriched categories. New York Journal of Mathematics, 25: 1485–1510, 2019.

[16] P. Gaucher. Flows revisited: the model category structure and its left determinedness. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LXI-2: 208–226, 2020.

[17] P. Gaucher. Homotopy theory of Moore flows (II). Extracta Mathematicae, 36 (2): 157–239, 2021a. https:/​/​doi.org/​10.17398/​2605-5686.36.2.157.
https:/​/​doi.org/​10.17398/​2605-5686.36.2.157

[18] P. Gaucher. Six model categories for directed homotopy. Categories and General Algebraic Structures with Applications, 15 (1): 145–181, 2021b. https:/​/​doi.org/​10.52547/​cgasa.15.1.145.
https:/​/​doi.org/​10.52547/​cgasa.15.1.145

[19] P. Gaucher. Left properness of flows. Theory and Applications of Categories, 37 (19): 562–612, 2021c.

[20] P. Gaucher. Homotopy theory of Moore flows I, Compositionality 3, 3, 2021. https:/​/​arxiv.org/​abs/​2010.13664v4.
arXiv:2010.13664v4

[21] M. Grandis. Directed homotopy theory. I. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 44 (4): 281–316, 2003.

[22] M. Grandis. Normed combinatorial homology and noncommutative tori. Theory and Applications of Categories, 13 (7): 114–128, 2004a.

[23] M. Grandis. Inequilogical spaces, directed homology and noncommutative geometry. Homology, Homotopy and Applications, 6 (1): 413–437, 2004b. https:/​/​doi.org/​10.4310/​hha.2004.v6.n1.a21.
https:/​/​doi.org/​10.4310/​hha.2004.v6.n1.a21

[24] M. Grandis. Directed combinatorial homology and noncommutative tori (the breaking of symmetries in algebraic topology). Mathematical Proceedings of the Cambridge Philosophical Society, 138 (2): 233–262, 2005. https:/​/​doi.org/​10.1017/​S0305004104008217.
https:/​/​doi.org/​10.1017/​S0305004104008217

[25] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003. https:/​/​doi.org/​10.1090/​surv/​099.
https:/​/​doi.org/​10.1090/​surv/​099

[26] M. Hovey. Model categories. American Mathematical Society, Providence, RI, 1999. https:/​/​doi.org/​10.1090/​surv/​063.
https:/​/​doi.org/​10.1090/​surv/​063

[27] V. Isaev. On fibrant objects in model categories. Theory and Applications of Categories, 33 (3): 43–66, 2018.

[28] G. M. Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, (10): vi+137 pp., 2005. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714].

[29] G. M. Kelly and S. Lack. $\mathcal{V}$-Cat is locally presentable or locally bounded if $\mathcal{V}$ is so. Theory and Applications of Categories, 8: 555–575, 2001.

[30] S. Krishnan. A convenient category of locally preordered spaces. Applied Categorical Structures, 17 (5): 445–466, 2009. https:/​/​doi.org/​10.1007/​s10485-008-9140-9.
https:/​/​doi.org/​10.1007/​s10485-008-9140-9

[31] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, New York, second edition, 1998. https:/​/​doi.org/​10.1007/​978-1-4757-4721-8.
https:/​/​doi.org/​10.1007/​978-1-4757-4721-8

[32] J. P. May and J. Sigurdsson. Parametrized homotopy theory, volume 132 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. https:/​/​doi.org/​10.1090/​surv/​132.
https:/​/​doi.org/​10.1090/​surv/​132

[33] L. Moser. Injective and projective model structures on enriched diagram categories. Homology, Homotopy and Applications, 21 (2): 279–300, 2019. https:/​/​doi.org/​10.4310/​hha.2019.v21.n2.a15.
https:/​/​doi.org/​10.4310/​hha.2019.v21.n2.a15

[34] P. R. North. Type-theoretic weak factorization systems. 2019. https:/​/​doi.org/​10.48550/​arXiv.1906.00259.
https:/​/​doi.org/​10.48550/​arXiv.1906.00259

[35] I. Orton and A. M. Pitts. Models of Type Theory Based on Moore Paths. Logical Methods in Computer Science, 15 (1), 2019. https:/​/​doi.org/​10.23638/​LMCS-15(1:2)2019.
https:/​/​doi.org/​10.23638/​LMCS-15(1:2)2019

[36] J. Paliga and K. Ziemiański. Configuration spaces and directed paths on the final precubical set. Fundamenta Mathematicae, 257 (3): 229–263, 2022. https:/​/​doi.org/​10.4064/​fm114-9-2021.
https:/​/​doi.org/​10.4064/​fm114-9-2021

[37] M. Raussen. Trace spaces in a pre-cubical complex. Topology and its Applications, 156 (9): 1718–1728, 2009. https:/​/​doi.org/​10.1016/​j.topol.2009.02.003.
https:/​/​doi.org/​10.1016/​j.topol.2009.02.003

[38] M. Raussen. Strictifying and taming directed paths in higher dimensional automata. Mathematical Structures in Computer Science, 31 (2): 193–213, February 2021. https:/​/​doi.org/​10.1017/​s0960129521000128.
https:/​/​doi.org/​10.1017/​s0960129521000128

[39] J. Rosický. On combinatorial model categories. Applied Categorical Structures, 17 (3): 303–316, 2009. https:/​/​doi.org/​10.1007/​s10485-008-9171-2.
https:/​/​doi.org/​10.1007/​s10485-008-9171-2

[40] K. Ziemiański. Spaces of directed paths on pre-cubical sets. Applicable Algebra in Engineering, Communication and Computing, 28 (6): 497–525, 2017. https:/​/​doi.org/​10.1007/​s00200-017-0316-0.
https:/​/​doi.org/​10.1007/​s00200-017-0316-0

[41] K. Ziemiański. Spaces of directed paths on pre-cubical sets II. Journal of Applied and Computational Topology, 4 (1): 45–78, 2020. https:/​/​doi.org/​10.1007/​s41468-019-00040-z.
https:/​/​doi.org/​10.1007/​s41468-019-00040-z

Cited by

[1] Philippe Gaucher, "Homotopy theory of Moore flows (I)", Compositionality 3, 3 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-27 21:26:20). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-27 21:26:20).