Compositionality

The open-access journal for the mathematics of composition

Assignments to sheaves of pseudometric spaces

Michael Robinson

Mathematics and Statistics, American University, Washington, DC, USA

ABSTRACT

An assignment to a sheaf is the choice of a local section from each open set in the sheaf's base space, without regard to how these local sections are related to one another. This article explains that the consistency radius --- which quantifies the agreement between overlapping local sections in the assignment --- is a continuous map. When thresholded, the consistency radius produces the consistency filtration, which is a filtration of open covers. This article shows that the consistency filtration is a functor that transforms the structure of the sheaf and assignment into a nested set of covers in a structure-preserving way. Furthermore, this article shows that consistency filtration is robust to perturbations, establishing its validity for arbitrarily thresholded, noisy data.

► BibTeX data

► References

[1] Samson Abramsky and Adam Brandenburger. The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics, 13 (11): 113036, 2011. URL https:/​/​doi.org/​10.1088/​1367-2630/​13/​11/​113036.
https:/​/​doi.org/​10.1088/​1367-2630/​13/​11/​113036

[2] Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane Mansfield. Contextuality, cohomology and paradox, arxiv:1502.03097. 2015. URL https:/​/​dx.doi.org/​10.4230/​LIPIcs.CSL.2015.211.
https:/​/​doi.org/​10.4230/​LIPIcs.CSL.2015.211
arXiv:1502.03097

[3] Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the algebraic stability of persistence. In Proceedings of the Thirtieth Annual Symposium Computational Geometry, page 355, 2014. URL https:/​/​doi.org/​10.1145/​2582112.2582168.
https:/​/​doi.org/​10.1145/​2582112.2582168

[4] J. Curry. Sheaves, Cosheaves and Applications, arXiv:1303.3255. PhD thesis, University of Pennsylvania, 2013. URL https:/​/​arxiv.org/​abs/​1303.3255.
arXiv:1303.3255

[5] Justin Curry, Robert Ghrist, and Vidit Nanda. Discrete Morse theory for computing cellular sheaf cohomology. Foundations of Computational Mathematics, 16 (4): 875–897, 2016. URL https:/​/​doi.org/​10.1007/​s10208-015-9266-8.
https:/​/​doi.org/​10.1007/​s10208-015-9266-8

[6] V. de Silva and G. Carlsson. Topological estimation using witness complexes. In M. Alexa and S. Rusinkiewicz, editors, Eurographics Symposium on Point-based Graphics, 2004.

[7] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28: 511–533, 2002. URL https:/​/​doi.org/​10.1109/​SFCS.2000.892133.
https:/​/​doi.org/​10.1109/​SFCS.2000.892133

[8] R. Ghrist. Barcodes: the persistent topology of data. Bulletin-American Mathematical Society, 45 (1): 61, 2008. URL https:/​/​doi.org/​10.1090/​S0273-0979-07-01191-3.
https:/​/​doi.org/​10.1090/​S0273-0979-07-01191-3

[9] Robert Ghrist and Yasuaki Hiraoka. Network codings and sheaf cohomology. In NOLTA, 2011.

[10] Robert Ghrist and Sanjeevi Krishnan. A topological max-flow-min-cut theorem. In 2013 IEEE Global Conference on Signal and Information Processing, pages 815–818. IEEE, 2013. URL https:/​/​doi.org/​10.1109/​GlobalSIP.2013.6737016.
https:/​/​doi.org/​10.1109/​GlobalSIP.2013.6737016

[11] Joseph A Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures in Computer Science, 2 (02): 159–191, 1992. URL https:/​/​doi.org/​10.1017/​S0960129500001420.
https:/​/​doi.org/​10.1017/​S0960129500001420

[12] Shaun Harker, Miroslav Kramár, Rachel Levanger, and Konstantin Mischaikow. A comparison framework for interleaved persistence modules. Journal of Applied and Computational Topology, 3 (1-2): 85–118, 2019. URL https:/​/​doi.org/​10.1007/​s41468-019-00026-x.
https:/​/​doi.org/​10.1007/​s41468-019-00026-x

[13] John H. Hubbard. Teichmüller Theory, volume 1. Matrix Editions, 2006.

[14] Cliff Joslyn. On beyond graphs: Multidimensional graph structures for the data sciences. In GraphFest, 2016.

[15] Cliff Joslyn, Kathleen Nowak, Brenda Praggastis, Emilie Purvine, and Michael Robinson. Computations for local and pseudo sections in real-world sheaves. In Joint Mathematics Meetings Special Session on Sheaves in Topological Data Analysis, Atlanta, GA, January 2017.

[16] J. Lilius. Sheaf semantics for Petri nets. Technical report, Helsinki University of Technology, Digital Systems Laboratory, 1993.

[17] Grant Malcolm. Sheaves, objects, and distributed systems. Electronic Notes in Theoretical Computer Science, 225: 3–19, 2009. URL https:/​/​doi.org/​10.1016/​j.entcs.2008.12.063.
https:/​/​doi.org/​10.1016/​j.entcs.2008.12.063

[18] Seyed Mansourbeigi. Sheaf theory approach to distributed applications: Analysing heterogeneous data in air traffic monitoring. International Journal of Data Science and Analysis, 3 (5): 34–39, 2017. URL http:/​/​dx.doi.org/​10.11648/​j.ijdsa.20170305.11.
https:/​/​doi.org/​10.11648/​j.ijdsa.20170305.11

[19] Seyed MH Mansourbeigi. Sheaf theory as a mathematical foundation for distributed applications involving heterogeneous data sets. In 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), pages 28–33. IEEE, 2018. URL https:/​/​doi.org/​10.11648/​j.ijdsa.20170305.11.
https:/​/​doi.org/​10.11648/​j.ijdsa.20170305.11

[20] Saigopal Nelaturi, Johan de Kleer, and Vadim Shapiro. Combinatorial models for heterogeneous system composition and analysis. In SoSE, pages 1–6, 2016. URL https:/​/​doi.org/​10.1109/​SYSOSE.2016.7542952.
https:/​/​doi.org/​10.1109/​SYSOSE.2016.7542952

[21] Miradain Atontsa Nguemo and Calvin Tcheka. Sheaf cohomology on network codings: maxflow-mincut theorem. Applied General Topology, 18 (2): 219–230, 2017. URL http:/​/​dx.doi.org/​10.4995/​agt.2017.3371.
https:/​/​doi.org/​10.4995/​agt.2017.3371

[22] Brenda Praggastis. Maximal sections of sheaves of data over an abstract simplicial complex, arxiv:1612.00397, 2016. URL https:/​/​arxiv.org/​abs/​1612.00397.
arXiv:1612.00397

[23] Michael Robinson. Asynchronous logic circuits and sheaf obstructions. Electronic Notes in Theoretical Computer Science, pages 159–177, 2012. URL https:/​/​doi.org/​10.1016/​j.entcs.2012.05.010.
https:/​/​doi.org/​10.1016/​j.entcs.2012.05.010

[24] Michael Robinson. Analyzing wireless communication network vulnerability with homological invariants. In IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014a. URL https:/​/​doi.org/​10.1109/​GlobalSIP.2014.7032250.
https:/​/​doi.org/​10.1109/​GlobalSIP.2014.7032250

[25] Michael Robinson. Topological Signal Processing. Springer, January 2014b. URL http:/​/​doi.org/​10.1007/​978-3-642-36104-3.
https:/​/​doi.org/​10.1007/​978-3-642-36104-3

[26] Michael Robinson. Tracking before detection using partially ordered sets and optimization. Technical Report AU-CAS-MathStats Technical Report No. 2015-5, American University, 2015a. URL http:/​/​auislandora.wrlc.org/​islandora/​object/​techreports:24.
http:/​/​auislandora.wrlc.org/​islandora/​object/​techreports:24

[27] Michael Robinson. Pseudosections of sheaves with consistency structures. Technical Report AU-CAS-MathStats Technical Report No. 2015-2, American University, 2015b. URL http:/​/​auislandora.wrlc.org/​islandora/​object/​techreports:19.
http:/​/​auislandora.wrlc.org/​islandora/​object/​techreports:19

[28] Michael Robinson. Finding cross-species orthologs with local topology. In ACM-Biocomputing and Bioinformatics Workshop on Topological Data Analysis in Biomedicine, Seattle, WA, October 2016a.

[29] Michael Robinson. Imaging geometric graphs using internal measurements. J. Differential Equations, 260: 872–896, 2016b. URL http:/​/​dx.doi.org/​10.1016/​j.jde.2015.09.014.
https:/​/​doi.org/​10.1016/​j.jde.2015.09.014

[30] Michael Robinson. Sheaf and duality methods for analyzing multi-model systems. In I. Pesenson, Q.T. Le Gia, A. Mayeli, H. Mhaskar, and D.-X. Zhou, editors, Novel Methods in Harmonic Analysis (in press). Birkhäuser, 2017a. URL https:/​/​doi.org/​10.1007/​978-3-319-55556-0_8.
https:/​/​doi.org/​10.1007/​978-3-319-55556-0_8

[31] Michael Robinson. Sheaves are the canonical datastructure for information integration. Information Fusion, 36: 208–224, 2017b. URL http:/​/​dx.doi.org/​10.1016/​j.inffus.2016.12.002.
https:/​/​doi.org/​10.1016/​j.inffus.2016.12.002

[32] J. Schürmann. Topology of singular spaces and constructible sheaves, volume 63. Birkhauser, 2003.

[33] Allen Shepard. A cellular description of the derived category of a stratified space. PhD thesis, Brown University, 1985.

[34] Wlodek Zadrozny and Luciana Garbayo. A sheaf model of contradictions and disagreements. preliminary report and discussion, arxiv:1801.09036. 2018. URL https:/​/​arxiv.org/​abs/​1801.09036.
arXiv:1801.09036

[35] A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33 (2): 249–274, 2005. URL https:/​/​doi.org/​10.1007/​s00454-004-1146-y.
https:/​/​doi.org/​10.1007/​s00454-004-1146-y

Cited by

[1] Michael Robinson and Christopher T. Capraro, "Super-resolving star clusters with sheaves", EURASIP Journal on Advances in Signal Processing 2022 1, 26 (2022).

[2] Michael Robinson, "Aggregation sheaves for greedy modal decompositions", Journal of Physics Communications 6 4, 045004 (2022).

The above citations are from Crossref's cited-by service (last updated 2022-12-24 13:56:13). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2022-12-24 13:56:13).