Compositionality

The open-access journal for the mathematics of composition

Fuzzy sets and presheaves

John F. Jardine

Department of Mathematics, University of Western Ontario, London, Ontario, Canada

ABSTRACT

This paper presents a presheaf theoretic approach to the construction of fuzzy sets, which builds on Barr's description of fuzzy sets as sheaves of monomorphisms on a locale. Presheaves are used to give explicit descriptions of limit and colimit descriptions in fuzzy sets on an interval. The Boolean localization construction for sheaves on a locale specializes to a theory of stalks for sheaves and presheaves on an interval.

The system $V_{\ast}(X)$ of Vietoris-Rips complexes for a data set $X$ is both a simplicial fuzzy set and a simplicial sheaf in this general framework. This example is explicitly discussed through a series of examples.

► BibTeX data

► References

[1] Michael Barr. Fuzzy set theory and topos theory. Canad. Math. Bull., 29 (4): 501–508, 1986. ISSN 0008-4395. 10.4153/​CMB-1986-079-9.
https:/​/​doi.org/​10.4153/​CMB-1986-079-9

[2] Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. arXiv, 1705.01690, 2017. arXiv:1705.01690.
arXiv:1705.01690

[3] Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res., 11: 1425–1470, 2010. ISSN 1532-4435.

[4] Didier Dubois, Walenty Ostasiewicz, and Henri Prade. Fuzzy sets: history and basic notions. In Fundamentals of fuzzy sets, volume 7 of Handb. Fuzzy Sets Ser., pages 21–124. Kluwer Acad. Publ., Boston, MA, 2000. 10.1007/​978-1-4615-4429-6_2.
https:/​/​doi.org/​10.1007/​978-1-4615-4429-6_2

[5] Paul G. Goerss and John F. Jardine. Simplicial homotopy theory. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2009. ISBN 978-3-0346-0188-7. 10.1007/​978-3-0346-0189-4. Reprint of the 1999 edition.
https:/​/​doi.org/​10.1007/​978-3-0346-0189-4

[6] John F. Jardine. Boolean localization, in practice. Documenta Mathematica, 1: 245–275, 1996. ISSN 1431-0635.

[7] John F. Jardine. Local persistence: homotopy theory of filtrations. Oberwolfach Reports, 5 (3): 1623–1625, 2008.

[8] John F. Jardine. Local Homotopy Theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2015. 10.1007/​978-1-4939-2300-7.
https:/​/​doi.org/​10.1007/​978-1-4939-2300-7

[9] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag, New York, 1994. ISBN 0-387-97710-4. 10.1007/​978-1-4612-0927-0.
https:/​/​doi.org/​10.1007/​978-1-4612-0927-0

[10] Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for dimension reduction. 2018. arXiv:1802.03426.
arXiv:1802.03426

[11] David I. Spivak. Metric realization of fuzzy simplicial sets. Preprint, 2009.

Cited by

[1] King-Yin Yan, Lecture Notes in Computer Science 13154, 327 (2022) ISBN:978-3-030-93757-7.

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-30 03:52:38). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2025-01-09 07:32:51: Could not fetch cited-by data for 10.32408/compositionality-1-3 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2025-01-09 07:32:51).