ABSTRACT
An often used model for quantum theory is to associate to every physical system a C$^*$-algebra. From a physical point of view it is unclear why operator algebras would form a good description of nature. In this paper, we find a set of physically meaningful assumptions such that any physical theory satisfying these assumptions must embed into the category of finite-dimensional C$^*$-algebras. These assumptions were originally introduced in the setting of effectus theory, a categorical logical framework generalizing classical and quantum logic. As these assumptions have a physical interpretation, this motivates the usage of operator algebras as a model for quantum theory.
In contrast to other reconstructions of quantum theory, we do not start with the framework of generalized probabilistic theories and instead use effect theories where no convex structure and no tensor product needs to be present. The lack of this structure in effectus theory has led to a different notion of pure maps. A map in an effectus is pure when it is a composition of a compression and a filter. These maps satisfy particular universal properties and respectively correspond to `forgetting' and `measuring' the validity of an effect.
We define a pure effect theory (PET) to be an effect theory where the pure maps form a dagger-category and filters and compressions are adjoint. We show that any convex finite-dimensional PET must embed into the category of Euclidean Jordan algebras. Moreover, if the PET also has monoidal structure, then we show that it must embed into either the category of real or complex C$^*$-algebras, which completes our reconstruction.
► BibTeX data
► References
[1] Erik M Alfsen and Frederic W Shultz. Geometry of state spaces of operator algebras. Springer Science & Business Media, 2012a. 10.1007/978-1-4612-0019-2.
https://doi.org/10.1007/978-1-4612-0019-2
[2] Erik M Alfsen and Frederik W Shultz. State spaces of operator algebras: basic theory, orientations, and C*-products. Springer Science & Business Media, 2012b. 10.1007/978-1-4612-0147-2.
https://doi.org/10.1007/978-1-4612-0147-2
[3] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce. Generalized no-broadcasting theorem. Physical Review Letters, 99 (24): 240501, 2007. 10.1103/PhysRevLett.99.240501.
https://doi.org/10.1103/PhysRevLett.99.240501
[4] Howard Barnum, Markus P Müller, and Cozmin Ududec. Higher-order interference and single-system postulates characterizing quantum theory. New Journal of Physics, 16 (12): 123029, 2014. 10.1088/1367-2630/16/12/123029.
https://doi.org/10.1088/1367-2630/16/12/123029
[5] Howard Barnum, Matthew Graydon, and Alexander Wilce. Composites and categories of Euclidean Jordan algebras. 2016. arxiv.org/1606.09331.
arXiv:1606.09331
[6] Jonathan Barrett. Information processing in generalized probabilistic theories. Physical Review A, 75 (3): 032304, 2007. 10.1103/PhysRevA.75.032304.
https://doi.org/10.1103/PhysRevA.75.032304
[7] Jonathan Barrett, Niel de Beaudrap, Matty J Hoban, and Ciarán M Lee. The computational landscape of general physical theories. npj Quantum Information, 5 (1): 41, 2019. 10.1038/s41534-019-0156-9.
https://doi.org/10.1038/s41534-019-0156-9
[8] Mary K Bennett and David J Foulis. Interval and scale effect algebras. Advances in Applied Mathematics, 19 (2): 200–215, 1997. 10.1006/aama.1997.0535.
https://doi.org/10.1006/aama.1997.0535
[9] Fernando GSL Brandao, Michał Horodecki, Jonathan Oppenheim, Joseph M Renes, and Robert W Spekkens. Resource theory of quantum states out of thermal equilibrium. Physical Review Letters, 111 (25): 250404, 2013. 10.1023/B:OPSY.0000047566.72717.71.
https://doi.org/10.1023/B:OPSY.0000047566.72717.71
[10] Giulio Chiribella and Carlo Maria Scandolo. Operational axioms for diagonalizing states. In Chris Heunen, Peter Selinger, and Jamie Vicary, editors, Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15-17, 2015, volume 195 of Electronic Proceedings in Theoretical Computer Science, pages 96–115. Open Publishing Association, 2015. 10.4204/EPTCS.195.8.
https://doi.org/10.4204/EPTCS.195.8
[11] Giulio Chiribella and Carlo Maria Scandolo. Purity in microcanonical thermodynamics: a tale of three resource theories. 2016. arxiv.org:1608.04460. 10.1088/1367-2630/aa91c7.
https://doi.org/10.1088/1367-2630/aa91c7
arXiv:1608.04460
[12] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Probabilistic theories with purification. Physical Review A, 81 (6): 062348, 2010. 10.1103/PhysRevA.81.062348.
https://doi.org/10.1103/PhysRevA.81.062348
[13] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Informational derivation of quantum theory. Physical Review A, 84 (1): 012311, 2011. 10.1103/PhysRevA.84.012311.
https://doi.org/10.1103/PhysRevA.84.012311
[14] Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan. An introduction to effectus theory. 2015a. arxiv.org:1512.05813.
arXiv:1512.05813
[15] Kenta Cho, Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. Quotient-comprehension chains. In Chris Heunen, Peter Selinger, and Jamie Vicary, editors, Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15-17, 2015, volume 195 of Electronic Proceedings in Theoretical Computer Science, pages 136–147. Open Publishing Association, 2015b. 10.4204/EPTCS.195.10.
https://doi.org/10.4204/EPTCS.195.10
[16] Oscar Cunningham and Chris Heunen. Purity through factorisation. In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of Electronic Proceedings in Theoretical Computer Science, pages 315–328. Open Publishing Association, 2018. 10.4204/EPTCS.266.20.
https://doi.org/10.4204/EPTCS.266.20
[17] Borivoje Dakic and Caslav Brukner. Quantum theory and beyond: is entanglement special? 2009. arxiv:0911.0695.
arXiv:0911.0695
[18] Igor Devetak. Distillation of local purity from quantum states. Physical Review A, 71 (6): 062303, 2005. 10.1007/BF01646490.
https://doi.org/10.1007/BF01646490
[19] Pau Enrique Moliner, Chris Heunen, and Sean Tull. Space in monoidal categories. In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of Electronic Proceedings in Theoretical Computer Science, pages 399–410. Open Publishing Association, 2018. 10.4204/EPTCS.266.25.
https://doi.org/10.4204/EPTCS.266.25
[20] Daniel I Fivel. Derivation of the rules of quantum mechanics from information-theoretic axioms. Foundations of Physics, 42 (2): 291–318, 2012. 10.1007/s10701-011-9603-y.
https://doi.org/10.1007/s10701-011-9603-y
[21] David J Foulis and Mary K Bennett. Effect algebras and unsharp quantum logics. Foundations of physics, 24 (10): 1331–1352, 1994. 10.1007/BF02283036.
https://doi.org/10.1007/BF02283036
[22] Christopher A Fuchs. Quantum mechanics as quantum information (and only a little more). 2002. arxiv:0205039.
arXiv:quant-ph/0205039
[23] Stefano Gogioso. Fantastic quantum theories and where to find them. 2017.
[24] Stefano Gogioso and Fabrizio Genovese. Towards quantum field theory in categorical quantum mechanics. In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of Electronic Proceedings in Theoretical Computer Science, pages 349–366. Open Publishing Association, 2018. 10.4204/EPTCS.266.22.
https://doi.org/10.4204/EPTCS.266.22
[25] Philip Goyal. From information geometry to quantum theory. New Journal of Physics, 12 (2): 023012, 2010. 10.1088/1367-2630/12/2/023012.
https://doi.org/10.1088/1367-2630/12/2/023012
[26] Stanley Gudder. Convex structures and effect algebras. International Journal of Theoretical Physics, 38 (12): 3179–3187, 1999. 10.1023/A:1026678114856.
https://doi.org/10.1023/A:1026678114856
[27] Jack Gunson. On the algebraic structure of quantum mechanics. Communications in mathematical physics, 6 (4): 262–285, 1967. 10.1007/BF01646019.
https://doi.org/10.1007/BF01646019
[28] Harald Hanche-Olsen. JB-algebras with tensor products are C*-algebras. In Operator Algebras and their Connections with Topology and Ergodic Theory, pages 223–229. Springer, 1985. 10.1007/BFb0074886.
https://doi.org/10.1007/BFb0074886
[29] Lucien Hardy. Quantum theory from five reasonable axioms. 2001. arXiv:0101012.
arXiv:quant-ph/0101012
[30] Lucien Hardy. Reconstructing quantum theory. In Quantum Theory: Informational Foundations and Foils, pages 223–248. Springer, 2016. 10.1007/978-94-017-7303-4_7.
https://doi.org/10.1007/978-94-017-7303-4_7
[31] Lucien Hardy and William K Wootters. Limited holism and real-vector-space quantum theory. Foundations of Physics, 42 (3): 454–473, 2012. 10.1007/s10701-011-9616-6.
https://doi.org/10.1007/s10701-011-9616-6
[32] Chris Heunen and Bart Jacobs. Quantum logic in dagger kernel categories. Order, 27 (2): 177–212, 2010. 10.1007/s11083-010-9145-5.
https://doi.org/10.1007/s11083-010-9145-5
[33] Philipp Andres Höhn. Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum, 1: 38, 2017. 10.22331/q-2017-12-14-38.
https://doi.org/10.22331/q-2017-12-14-38
[34] Bart Jacobs, Jorik Mandemaker, and Robert Furber. The expectation monad in quantum foundations. Information and Computation, 250: 87–114, 2016. 10.1016/j.ic.2016.02.009.
https://doi.org/10.1016/j.ic.2016.02.009
[35] Pascual Jordan. Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik. Weidmann, 1933.
[36] Pascual Jordan, John von Neumann, and Eugene Wigner. On an algebraic generalization of the quantum mechanical formalism. Annals of Mathematics, 35 (1): 29–64, 1934. ISSN 0003486X. 10.2307/1968117.
https://doi.org/10.2307/1968117
[37] Marius Krumm, Howard Barnum, Jonathan Barrett, and Markus P Müller. Thermodynamics and the structure of quantum theory. New Journal of Physics, 19 (4): 043025, 2017. 10.1088/1367-2630/aa68ef.
https://doi.org/10.1088/1367-2630/aa68ef
[38] Lluis Masanes and Markus P Müller. A derivation of quantum theory from physical requirements. New Journal of Physics, 13 (6): 063001, 2011. 10.1088/1367-2630/13/6/063001.
https://doi.org/10.1088/1367-2630/13/6/063001
[39] Lluis Masanes, Markus P Müller, David Pérez-García, and Remigiusz Augusiak. Entanglement and the three-dimensionality of the Bloch ball. Journal of Mathematical Physics, 55 (12): 122203, 2014. 10.1063/1.4903510.
https://doi.org/10.1063/1.4903510
[40] Sandu Popescu. Nonlocality beyond quantum mechanics. Nature Physics, 10 (4): 264, 2014. 10.1038/nphys2916.
https://doi.org/10.1038/nphys2916
[41] John H Selby, Carlo Maria Scandolo, and Bob Coecke. Reconstructing quantum theory from diagrammatic postulates. 2018. arxiv:1802.00367.
arXiv:1802.00367
[42] Anthony J Short and Stephanie Wehner. Entropy in general physical theories. New Journal of Physics, 12 (3): 033023, 2010. 10.1088/1367-2630/12/3/033023.
https://doi.org/10.1088/1367-2630/12/3/033023
[43] Robert W Spekkens. Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75 (3): 032110, 2007. 10.1103/PhysRevA.75.032110.
https://doi.org/10.1103/PhysRevA.75.032110
[44] Sean Tull. A categorical reconstruction of quantum theory. 2016. arxiv:1804.02265.
arXiv:1804.02265
[45] Sean Tull. Categorical operational physics. 2019. arxiv:1902.00343.
arXiv:1902.00343
[46] John van de Wetering. Sequential product spaces are Jordan algebras. Journal of Mathematical Physics, 60 (6): 062201, 2019. 10.1063/1.5093504.
https://doi.org/10.1063/1.5093504
[47] Abraham Westerbaan and Bas Westerbaan. A universal property for sequential measurement. Journal of Mathematical Physics, 57 (9): 092203, 2016. 10.1063/1.4961526.
https://doi.org/10.1063/1.4961526
[48] Abraham Westerbaan and Bas Westerbaan. Paschke dilations. In Ross Duncan and Chris Heunen, editors, Proceedings 13th International Conference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June 2016, volume 236 of Electronic Proceedings in Theoretical Computer Science, pages 229–244. Open Publishing Association, 2017. 10.4204/EPTCS.236.15.
https://doi.org/10.4204/EPTCS.236.15
[49] Abraham Westerbaan, Bas Westerbaan, and John van de Wetering. Pure Maps between Euclidean Jordan Algebras. In Peter Selinger and Giulio Chiribella, editors, Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, volume 287 of Electronic Proceedings in Theoretical Computer Science, pages 345–364. Open Publishing Association, 2019. 10.4204/EPTCS.287.19.
https://doi.org/10.4204/EPTCS.287.19
[50] Abraham A. Westerbaan. The Category of Von Neumann Algebras. PhD thesis, Radboud Universiteit Nijmegen, 2019a. URL https://bram.westerbaan.name/thesis.pdf.
https://bram.westerbaan.name/thesis.pdf
[51] Bas Westerbaan. Dagger and dilations in the category of von Neumann algebras. PhD thesis, Radboud Universiteit Nijmegen, 2019b. URL https://westerbaan.name/ bas/thesis.pdf.
https://westerbaan.name/~bas/thesis.pdf
[52] Alexander Wilce. A royal road to quantum theory (or thereabouts). Entropy, 20 (4): 227, 2018. 10.3390/e20040227.
https://doi.org/10.3390/e20040227
Cited by
Could not fetch Crossref cited-by data during last attempt 2024-12-04 17:34:16: Could not fetch cited-by data for 10.32408/compositionality-1-1 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2024-12-04 17:34:17).
This Paper is published in Compositionality under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.